Atnaujinkite slapukų nuostatas

El. knyga: Deep Learning for the Earth Sciences: A Comprehensive Approach to Remote Sensing, Climate Science and Geosciences

Edited by , Edited by , Edited by (University of Valencia, Spain), Edited by
  • Formatas: PDF+DRM
  • Išleidimo metai: 16-Aug-2021
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781119646150
  • Formatas: PDF+DRM
  • Išleidimo metai: 16-Aug-2021
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781119646150

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

"The research in deep learning for the geosciences and Earth observation is growing fast and goes beyond the mere application of algorithms to new data. This is a huge interdisciplinary field. Applying new algorithms to the data deluge is a hot topic in all these cross-sectorial fields. Academic research on this area is strongly involved, and many specialized conferences and special issues in journals are arising each year. The book will provide the reader with the landscape, skills, and principles to quickly become familiar with both fields? needs and applications and will give a principled status of where are we now. The practitioner will be ready to use the technology and principles in his/her own research field in a short period of time. The highlights on future research at the end of each chapter will provide new ideas, particularly for those people involved in advanced research education, who will find these highlights of special interest for PhD Thesis orientations"--

Explore this insightful treatment of deep learning in the field of earth sciences, from four leading voices in the field

Deep learning is a fundamental technique in modern artificial intelligence and is being applied to disciplines across the scientific spectrum. Earth science is no exception. Yet, the link between deep learning and Earth sciences has only recently entered academic curricula and thus has not yet proliferate broad spread. Deep Learning for the Earth Sciences delivers a perspective and unique treatment of the concepts, skills, and practices necessary to quickly become familiar with the application of deep learning techniques to the Earth sciences. The book prepares readers to be ready to use the technologies and principles described within in their own research.

The distinguished editors have also included resources that explain and provide new ideas and recommendations for new research especially useful to those involved in advanced research education or those seeking PhD thesis orientations. Readers will also benefit from the inclusion of:

  • An introduction to deep learning for classification purposes, including advances in image segmentation and encoding priors, anomaly detection and target detection, and domain adaptation
  • An exploration of learning representations and unsupervised deep learning, including deep learning image fusion, image retrieval, and matching and co-registration
  • Practical discussions of regression, fitting, parameter retrieval, forecasting and interpolation
  • An examination of physics-aware deep learning models, including emulation of complex codes and model parametrizations

    Perfect for PhD students and researchers in the fields of geosciences, image processing, remote sensing, electrical engineering and computer science, and machine learning, Deep Learning for the Earth Sciences will also earn a place in the libraries of machine learning and pattern recognition researchers, engineers, and scientists.

  • Foreword xvi
    Vipin Kumar
    Acknowledgments xvii
    List of Contributors
    xviii
    List of Acronyms
    xxiv
    1 Introduction
    1(12)
    Gustau Camps-Vails
    Xiao Xiang Zhu
    Devis Tuia
    Markus Reichstein
    1.1 A Taxonomy of Deep Learning Approaches
    2(1)
    1.2 Deep Learning in Remote Sensing
    3(4)
    1.3 Deep Learning in Geosciences and Climate
    7(2)
    1.4 Book Structure and Roadmap
    9(4)
    Part I Deep Learning to Extract Information from Remote Sensing Images
    13(148)
    2 Learning Unsupervised Feature Representations of Remote Sensing Data with Sparse Convolutional Networks
    15(9)
    Jose E. Adsuara
    Manuel Campos-Taberner
    Javier Garaa-Haro
    Carlo Gatta
    Adriana Romero
    Gustau Camps-Vails
    2.1 Introduction
    15(2)
    2.2 Sparse Unsupervised Convolutional Networks
    17(2)
    2.2.1 Sparsity as the Guiding Criterion
    17(1)
    2.2.2 The EPLS Algorithm
    18(1)
    2.2.3 Remarks
    18(1)
    2.3 Applications
    19(3)
    2.3.1 Hyperspectral Image Classification
    19(2)
    2.3.2 Multisensor Image Fusion
    21(1)
    2.4 Conclusions
    22(2)
    3 Generative Adversarial Networks in the Geosciences
    24(13)
    Gonzalo Mateo-Garda
    Valero Laparra
    Christian Requena-Mesa
    Luis Gomez-Chow
    3.1 Introduction
    24(1)
    3.2 Generative Adversarial Networks
    25(3)
    3.2.1 Unsupervised GANs
    25(1)
    3.2.2 Conditional GANs
    26(1)
    3.2.3 Cycle-consistent GANs
    27(1)
    3.3 GANs in Remote Sensing and Geosciences
    28(3)
    3.3.1 GANs in Earth Observation
    28(2)
    3.3.2 Conditional GANs in Earth Observation
    30(1)
    3.3.3 CycleGANs in Earth Observation
    30(1)
    3.4 Applications of GANs in Earth Observation
    31(5)
    3.4.1 Domain Adaptation Across Satellites
    31(2)
    3.4.2 Learning to Emulate Earth Systems from Observations
    33(3)
    3.5 Conclusions and Perspectives
    36(1)
    4 Deep Self-taught Learning in Remote Sensing
    37(9)
    Ribana Roscher
    4.1 Introduction
    37(1)
    4.2 Sparse Representation
    38(2)
    4.2.1 Dictionary Learning
    39(1)
    4.2.2 Self-taught Learning
    40(1)
    4.3 Deep Self-taught Learning
    40(5)
    4.3.1 Application Example
    43(1)
    4.3.2 Relation to Deep Neural Networks
    44(1)
    4.4 Conclusion
    45(1)
    5 Deep Learning-based Semantic Segmentation in Remote Sensing
    46(21)
    Dew's Tula
    Diego Marcos
    Konrad Schindler
    Bertrand Le Saux
    5.1 Introduction
    46(1)
    5.2 Literature Review
    47(2)
    5.3 Basics on Deep Semantic Segmentation: Computer Vision Models
    49(6)
    5.3.1 Architectures for Image Data
    49(3)
    5.3.2 Architectures for Point-clouds
    52(3)
    5.4 Selected Examples
    55(11)
    5.4.1 Encoding Invariances to Train Smaller Models: The example of Rotation
    55(4)
    5.4.2 Processing 3D Point Clouds as a Bundle of Images: SnapNet
    59(3)
    5.4.3 Lake Ice Detection from Earth and from Space
    62(4)
    5.5 Concluding Remarks
    66(1)
    6 Object Detection in Remote Sensing
    67(23)
    Jian Ding
    Jinwang Wang
    Wen Yang
    Gui-Song Xia
    6.1 Introduction
    67(5)
    6.1.1 Problem Description
    67(2)
    6.1.2 Problem Settings of Object Detection
    69(1)
    6.1.3 Object Representation in Remote Sensing
    69(1)
    6.1.4 Evaluation Metrics
    69(1)
    6.1.4.1 Precision-Recall Curve
    70(1)
    6.1.4.2 Average Precision and Mean Average Precision
    71(1)
    6.1.5 Applications
    71(1)
    6.2 Preliminaries on Object Detection with Deep Models
    72(3)
    6.2.1 Two-stage Algorithms
    72(1)
    6.2.1.1 R-CNNs
    72(1)
    6.2.1.2 R-FCN
    73(1)
    6.2.2 One-stage Algorithms
    73(1)
    6.2.2.1 YOLO
    73(1)
    6.2.2.2 SSD
    73(2)
    6.3 Object Detection in Optical RS Images
    75(11)
    6.3.1 Related Works
    75(1)
    6.3.1.1 Scale Variance
    75(1)
    6.3.1.2 Orientation Variance
    75(1)
    6.3.1.3 Oriented Object Detection
    75(1)
    6.3.1.4 Detecting in Large-size Images
    76(1)
    6.3.2 Datasets and Benchmark
    77(1)
    6.3.2.1 DOTA
    77(1)
    6.3.2.2 VisDrone
    77(1)
    6.3.2.3 DIOR
    77(1)
    6.3.2.4 X View
    77(1)
    6.3.3 Two Representative Object Detectors in Optical RS Images
    78(1)
    6.3.3.1 Mask OBB
    78(4)
    6.3.3.2 Rol Transformer
    82(4)
    6.4 Object Detection in SAR Images
    86(3)
    6.4.1 Challenges of Detection in SAR Images
    86(1)
    6.4.2 Related Works
    86(2)
    6.4.3 Datasets and Benchmarks
    88(1)
    6.5 Conclusion
    89(1)
    7 Deep Domain Adaptation in Earth Observation
    90(615)
    Benjamin Keilenberger
    Onur Tasar
    Bharath Bhushan Damodaran
    Nicolas Courty
    Devis Tuia
    7.1 Introduction
    90(1)
    7.2 Families of Methodologies
    91(2)
    7.3 Selected Examples
    93(11)
    7.3.1 Adapting the Inner Representation
    93(4)
    7.3.2 Adapting the Inputs Distribution
    97(3)
    7.3.3 Using (few, well chosen) Labels from the Target Domain
    100(4)
    7.4 Concluding remarks
    104(1)
    8 Recurrent Neural Networks and the Temporal Component
    105(1)
    Marco Korner
    Marc Rujiwurm
    8.1 Recurrent Neural Networks
    106(5)
    8.1.1 Training RNNs
    107(1)
    8.1.1.1 Exploding and Vanishing Gradients
    107(2)
    8.1.1.2 Circumventing Exploding and Vanishing Gradients
    109(2)
    8.2 Gated Variants of RNNs
    111(3)
    8.2.1 Long Short-term Memory Networks
    111(1)
    8.2.1.1 The Cell State ct and the Hidden State h1
    112(1)
    8.2.1.2 The Forget Gate ft
    112(1)
    8.2.1.3 The Modulation Gate v1 and the Input Gate i1
    112(1)
    8.2.1.4 The Output Gate o1
    112(1)
    8.2.1.5 Training LSTM Networks
    113(1)
    8.2.2 Other Gated Variants
    113(1)
    8.3 Representative Capabilities of Recurrent Networks
    114(3)
    8.3.1 Recurrent Neural Network Topologies
    114(1)
    8.3.2 Experiments
    115(2)
    8.4 Application in Earth Sciences
    117(1)
    8.5 Conclusion
    118(2)
    9 Deep Learning for Image Matching and Co-registration
    120(16)
    Maria Vakaiopoulou
    Stergios Christodoutidis
    Mihir Sahasrabudhe
    Nikos Paragios
    9.1 Introduction
    120(3)
    9.2 Literature Review
    123(3)
    9.2.1 Classical Approaches
    123(1)
    9.2.2 Deep Learning Techniques for Image Matching
    124(1)
    9.2.3 Deep Learning Techniques for Image Registration
    125(1)
    9.3 Image Registration with Deep Learning
    126(8)
    9.3.1 2D Linear and Deformable Transformer
    126(1)
    9.3.2 Network Architectures
    127(1)
    9.3.3 Optimization Strategy
    128(1)
    9.3.4 Dataset and Implementation Details
    129(1)
    9.3.5 Experimental Results
    129(5)
    9.4 Conclusion and Future Research
    134(2)
    9.4.1 Challenges and Opportunities
    134(1)
    9.4.1.1 Dataset with Annotations
    134(1)
    9.4.1.2 Dimensionality of Data
    135(1)
    9.4.1.3 Multitemporal Datasets
    135(1)
    9.4.1.4 Robustness to Changed Areas
    135(1)
    10 Multisource Remote Sensing Image Fusion
    136(14)
    Wei He
    Danfeng Hong
    Giuseppe Scarpa
    Tatsumi Uezato
    Naoto Yokoya
    10.1 Introduction
    136(1)
    10.2 Pansharpening
    137(6)
    10.2.1 Survey of Pansharpening Methods Employing Deep Learning
    137(3)
    10.2.2 Experimental Results
    140(1)
    10.2.2.1 Experimental Design
    140(1)
    10.2.2.2 Visual and Quantitative Comparison in Pansharpening
    140(3)
    10.3 Multiband Image Fusion
    143(5)
    10.3.1 Supervised Deep Learning-based Approaches
    143(2)
    10.3.2 Unsupervised Deep Learning-based Approaches
    145(1)
    10.3.3 Experimental Results
    146(1)
    10.3.3.1 Comparison Methods and Evaluation Measures
    146(1)
    10.3.3.2 Dataset and Experimental Setting
    146(1)
    10.3.3.3 Quantitative Comparison and Visual Results
    147(1)
    10.4 Conclusion and Outlook
    148(2)
    11 Deep Learning for Image Search and Retrieval in Large Remote Sensing Archives
    150(11)
    Gencer Sumbul
    Jian Kang
    Begum Demir
    11.1 Introduction
    150(2)
    11.2 Deep Learning for RS CBIR
    152(4)
    11.3 Scalable RS CBIR Based on Deep Hashing
    156(3)
    11.4 Discussion and Conclusion
    159(2)
    Acknowledgement
    160(1)
    Part II Making a Difference in the Geosciences With Deep Learning
    161(122)
    12 Deep Learning for Detecting Extreme Weather Patterns
    163(23)
    Mayur Mudigonda
    Prabhat Ram
    Karthik Kashinath
    Evan Racah
    Ankur Mahesh
    Yunjie Liu
    Christopher Beckham
    Jim Biard
    Thorsten Kurth
    Sookyung Kim
    Samira Kahou
    Tegan Maharaj
    Burlen Loring
    Christopher Pal
    Travis O'Brien
    Kenneth E. Kunkel
    Michael F. Wehner
    William D. Collins
    12.1 Scientific Motivation
    163(3)
    12.2 Tropical Cyclone and Atmospheric River Classification
    166(4)
    12.2.1 Methods
    166(1)
    12.2.2 Network Architecture
    167(2)
    12.2.3 Results
    169(1)
    12.3 Detection of Fronts
    170(5)
    12.3.1 Analytical Approach
    170(1)
    12.3.2 Dataset
    171(1)
    12.3.3 Results
    172(2)
    12.3.4 Limitations
    174(1)
    12.4 Semi-supervised Classification and Localization of Extreme Events
    175(4)
    12.4.1 Applications of Semi-supervised Learning in Climate Modeling
    175(1)
    12.4.1.1 Supervised Architecture
    176(1)
    12.4.1.2 Semi-supervised Architecture
    176(1)
    12.4.2 Results
    176(1)
    12.4.2.1 Frame-wise Reconstruction
    176(2)
    12.4.2.2 Results and Discussion
    178(1)
    12.5 Detecting Atmospheric Rivers and Tropical Cyclones Through Segmentation Methods
    179(5)
    12.5.1 Modeling Approach
    179(1)
    12.5.1.1 Segmentation Architecture
    180(1)
    12.5.1.2 Climate Dataset and Labels
    181(1)
    12.5.2 Architecture Innovations: Weighted Loss and Modified Network
    181(2)
    12.5.3 Results
    183(1)
    12.6 Challenges and Implications for the Future
    184(1)
    12.7 Conclusions
    185(1)
    13 Spatio-temporal Autoencoders in Weather and Climate Research
    186(18)
    Xavier-Andoni Tibau
    Christian Reimers
    Christian Requena-Mesa
    Jakob Runge
    13.1 Introduction
    186(1)
    13.2 Autoencoders
    187(6)
    13.2.1 A Brief History of Autoencoders
    188(1)
    13.2.2 Archetypes of Autoencoders
    189(2)
    13.2.3 Variational Autoencoders (VAE)
    191(1)
    13.2.4 Comparison Between Autoencoders and Classical Methods
    192(1)
    13.3 Applications
    193(10)
    13.3.1 Use of the Latent Space
    193(2)
    13.3.1.1 Reduction of Dimensionality for the Understanding of the System Dynamics and its Interactions
    195(4)
    13.3.1.2 Dimensionality Reduction for Feature Extraction and Prediction
    199(1)
    13.3.2 Use of the Decoder
    199(2)
    13.3.2.1 As a Random Sample Generator
    201(1)
    13.3.2.2 Anomaly Detection
    201(1)
    13.3.2.3 Use of a Denoising Autoencoder (DAE) Decoder
    202(1)
    13.4 Conclusions and Outlook
    203(1)
    14 Deep Learning to Improve Weather Predictions
    204(14)
    Peter D. Dueben
    Peter Bauer
    Samantha Adams
    14.1 Numerical Weather Prediction
    204(3)
    14.2 How Will Machine Learning Enhance Weather Predictions?
    207(1)
    14.3 Machine Learning Across the Workflow of Weather Prediction
    208(5)
    14.4 Challenges for the Application of ML in Weather Forecasts
    213(3)
    14.5 The Way Forward
    216(2)
    15 Deep Learning and the Weather Forecasting Problem: Precipitation Nowcasting
    218(22)
    Zhihan Gao
    Xingjian Shi
    Hao Wang
    Dit-Yan Yeung
    Wang-chun Woo
    Wai-Kin Wong
    15.1 Introduction
    218(2)
    15.2 Formulation
    220(1)
    15.3 Learning Strategies
    221(2)
    15.4 Models
    223(10)
    15.4.1 FNN-based Odels
    223(2)
    15.4.2 RNN-based Models
    225(1)
    15.4.3 Encoder-forecaster Structure
    226(1)
    15.4.4 Convolutional LSTM
    226(1)
    15.4.5 ConvLSTM with Star-shaped Bridge
    227(1)
    15.4.6 Predictive RNN
    228(1)
    15.4.7 Memory in Memory Network
    229(2)
    15.4.8 Trajectory GRU
    231(2)
    15.5 Benchmark
    233(3)
    15.5.1 HKO-7 Dataset
    234(1)
    15.5.2 Evaluation Methodology
    234(1)
    15.5.3 Evaluated Algorithms
    235(1)
    15.5.4 Evaluation Results
    236(1)
    15.6 Discussion
    236(4)
    Appendix
    238(1)
    Acknowledgement
    239(1)
    16 Deep Learning for High-dimensional Parameter Retrieval
    240(18)
    David Malmgren-Hansen
    16.1 Introduction
    240(2)
    16.2 Deep Learning Parameter Retrieval Literature
    242(2)
    16.2.1 Land
    242(1)
    16.2.2 Ocean
    243(1)
    16.2.3 Cryosphere
    244(1)
    16.2.4 Global Weather Models
    244(1)
    16.3 The Challenge of High-dimensional Problems
    244(6)
    16.3.1 Computational Load of CNNs
    247(2)
    16.3.2 Mean Square Error or Cross-entropy Optimization?
    249(1)
    16.4 Applications and Examples
    250(7)
    16.4.1 Utilizing High-Dimensional Spatio-spectral Information with CNNs
    250(3)
    16.4.2 The Effect of Loss Functions in Retrieval of Sea Ice Concentrations
    253(4)
    16.5 Conclusion
    257(1)
    17 A Review of Deep Learning for Cryospheric Studies
    258(11)
    Lin Liu
    17.1 Introduction
    258(2)
    17.2 Deep-learning-based Remote Sensing Studies of the Cryosphere
    260(5)
    17.2.1 Glaciers
    260(1)
    17.2.2 Ice Sheet
    261(1)
    17.2.3 Snow
    262(1)
    17.2.4 Permafrost
    263(1)
    17.2.5 Sea Ice
    264(1)
    17.2.6 River Ice
    265(1)
    17.3 Deep-learning-based Modeling of the Cryosphere
    265(1)
    17.4 A Summary and Prospect
    266(3)
    Appendix: List of Data and Codes
    267(2)
    18 Emulating Ecological Memory with Recurrent Neural Networks
    269(14)
    Basil Kraft
    Simon Besnard
    Sujan Koirala
    18.1 Ecological Memory Effects: Concepts and Relevance
    269(1)
    18.2 Data-driven Approaches for Ecological memory Effects
    270(2)
    18.2.1 A Brief Overview of Memory Effects
    270(1)
    18.2.2 Data-driven Methods for Memory Effects
    271(1)
    18.3 Case Study: Emulating a Physical Model Using Recurrent Neural Networks
    272(4)
    18.3.1 Physical Model Simulation Data
    272(1)
    18.3.2 Experimental Design
    273(1)
    18.3.3 RNN Setup and Training
    274(2)
    18.4 Results and Discussion
    276(5)
    18.4.1 The Predictive Capability Across Scales
    276(3)
    18.4.2 Prediction of Seasonal Dynamics
    279(2)
    18.5 Conclusions
    281(2)
    Part III Linking Physics and Deep Learning Models
    283(48)
    19 Applications of Deep Learning in Hydrology
    285(13)
    Chaopeng Shen
    Kathryn Lawson
    19.1 Introduction
    285(1)
    19.2 Deep Learning Applications in Hydrology
    286(10)
    19.2.1 Dynamical System Modeling
    286(1)
    19.2.1.1 Large-scale Hydrologic Modeling with Big Data
    286(4)
    19.2.1.2 Data-limited LSTM Applications
    290(2)
    19.2.2 Physics-constrained Hydrologic Machine Learning
    292(1)
    19.2.3 Information Retrieval for Hydrology
    293(1)
    19.2.4 Physically-informed Machine Learning for Subsurface Flow and Reactive Transport Modeling
    294(2)
    19.2.5 Additional Observations
    296(1)
    19.3 Current Limitations and Outlook
    296(2)
    20 Deep Learning of Unresolved Turbulent Ocean Processes in Climate Models
    298(9)
    Laure Zanna
    Thomas Bolton
    20.1 Introduction
    298(1)
    20.2 The Parameterization Problem
    299(1)
    20.3 Deep Learning Parameterizations of Subgrid Ocean Processes
    300(1)
    20.3.1 Why DL for Subgrid Parameterizations?
    300(1)
    20.3.2 Recent Advances in DL for Subgrid Parameterizations
    300(1)
    20.4 Physics-aware Deep Learning
    301(2)
    20.5 Further Challenges ahead for Deep Learning Parameterizations
    303(4)
    21 Deep Learning for the Parametrization of Subgrid Processes in Climate Models
    307(8)
    Pierre Gentine
    Veronika Eyring
    Tom Beuder
    21.1 Introduction
    307(2)
    21.2 Deep Neural Networks for Moist Convection (Deep Clouds) Parametrization
    309(3)
    21.3 Physical Constraints and Generalization
    312(2)
    21.4 Future Challenges
    314(1)
    22 Using Deep Learning to Correct Theoretically-derived Models
    315(13)
    Peter A. G. Watson
    22.1 Experiments with the Lorenz '96 System
    317(7)
    22.1.1 The Lorenz '96 Equations and Coarse-scale Models
    318(1)
    22.1.1.1 Theoretically-derived Coarse-scale Model
    318(1)
    22.1.1.2 Models with ANNs
    319(1)
    22.1.2 Results
    320(1)
    22.1.2.1 Single-timestep Tendency Prediction Errors
    320(1)
    22.1.2.2 Forecast and Climate Prediction Skill
    321(3)
    22.1.3 Testing Seamless Prediction
    324(1)
    22.2 Discussion and Outlook
    324(3)
    22.2.1 Towards Earth System Modeling
    325(1)
    22.2.2 Application to Climate Change Studies
    326(1)
    22.3 Conclusion
    327(1)
    23 Outlook
    328(3)
    Markus Reichstein
    Gustau Camps-Vails
    Devis Tuia
    Xiao Xiang Zhu
    Bibliography 331(70)
    Index 401
    Gustau Camps-Valls is Professor of Electrical Engineering and Lead Researcher in the Image Processing Laboratory (IPL) at the Universitat de Valčncia. His interests include development of statistical learning, mainly kernel machines and neural networks, for Earth sciences, from remote sensing to geoscience data analysis. Models efficiency and accuracy but also interpretability, consistency and causal discovery are driving his agenda on AI for Earth and climate.

    Devis Tuia, PhD, is Associate Professor at the Ecole Polytechnique Fédérale de Lausanne (EPFL). He leads the Environmental Computational Science and Earth Observation laboratory, which focuses on the processing of Earth observation data with computational methods to advance Environmental science.



    Xiao Xiang Zhu is Professor of Data Science in Earth Observation and Director of the Munich AI Future Lab AI4EO at the Technical University of Munich and heads the Department EO Data Science at the German Aerospace Center. Her lab develops innovative machine learning methods and big data analytics solutions to extract large scale geo-information from big Earth observation data, aiming at tackling societal grand challenges, e.g. Urbanization, UNs SDGs and Climate Change.

    Markus Reichstein is Director of the Biogeochemical Integration Department at the Max-Planck- Institute for Biogeochemistry and Professor for Global Geoecology at the University of Jena. His main research interests include the response and feedback of ecosystems (vegetation and soils) to climatic variability with an Earth system perspective, considering coupled carbon, water and nutrient cycles. He has been tackling these topics with applied statistical learning for more than 15 years.