Preface |
|
v | |
Part 1: Background |
|
1 | (44) |
|
|
3 | (6) |
|
1.1 Background on the Brain-Computer Interface |
|
|
3 | (2) |
|
|
5 | (1) |
|
|
6 | (3) |
|
2 Brain Signal Acquisition |
|
|
9 | (18) |
|
|
9 | (5) |
|
2.1.1 Intracortical Approaches |
|
|
12 | (1) |
|
2.1.2 Electrocorticography |
|
|
13 | (1) |
|
2.2 Noninvasive Approaches |
|
|
14 | (7) |
|
2.2.1 Electroencephalography |
|
|
14 | (3) |
|
2.2.2 Functional Near-infrared Spectroscopy |
|
|
17 | (1) |
|
2.2.3 Functional Magnetic Resonance Imaging |
|
|
18 | (1) |
|
|
19 | (1) |
|
2.2.5 Magnetoencephalography |
|
|
20 | (1) |
|
|
21 | (6) |
|
|
22 | (1) |
|
|
22 | (5) |
|
3 Deep Learning Foundations |
|
|
27 | (18) |
|
3.1 Discriminative Deep Learning Models |
|
|
29 | (6) |
|
3.1.1 Multilayer Perceptron |
|
|
29 | (2) |
|
3.1.2 Recurrent Neural Networks |
|
|
31 | (3) |
|
3.1.3 Convolutional Neural Networks |
|
|
34 | (1) |
|
3.2 Representative Deep Learning Models |
|
|
35 | (5) |
|
|
36 | (2) |
|
3.2.2 Restricted Boltzmann Machine |
|
|
38 | (1) |
|
3.2.3 Deep Belief Networks |
|
|
39 | (1) |
|
3.3 Generative Deep Learning Models |
|
|
40 | (3) |
|
3.3.1 Variational Autoencoder |
|
|
40 | (2) |
|
3.3.2 Generative Adversarial Networks |
|
|
42 | (1) |
|
|
43 | (2) |
Part 2: Deep Learning-Based BCI and Its Applications |
|
45 | (50) |
|
4 Deep Learning-Based BCI |
|
|
47 | (30) |
|
4.1 Intracortical and ECoG |
|
|
47 | (1) |
|
|
48 | (13) |
|
4.2.1 Spontaneous EEG Potentials |
|
|
48 | (10) |
|
|
58 | (3) |
|
|
61 | (1) |
|
|
62 | (1) |
|
|
63 | (1) |
|
|
64 | (1) |
|
|
64 | (13) |
|
4.7.1 Discussions on Brain Signals |
|
|
71 | (2) |
|
4.7.2 Discussions on Deep Learning Models |
|
|
73 | (4) |
|
5 Deep Learning-Based BCI Applications |
|
|
77 | (18) |
|
|
77 | (7) |
|
|
84 | (1) |
|
|
85 | (1) |
|
|
85 | (1) |
|
|
86 | (1) |
|
5.6 Driver Fatigue Detection |
|
|
86 | (1) |
|
5.7 Mental Load Measurement |
|
|
87 | (1) |
|
|
88 | (1) |
|
|
88 | (3) |
|
|
91 | (4) |
Part 3: Recent Advances on Deep Learning for EEG-Based BCI |
|
95 | (72) |
|
6 Robust Brain Signal Representation Learning |
|
|
97 | (26) |
|
|
97 | (3) |
|
|
100 | (13) |
|
6.2.1 Temporal Representation Learning |
|
|
100 | (3) |
|
6.2.2 Spatial Representation Learning |
|
|
103 | (2) |
|
6.2.3 Graphical Representation Learning |
|
|
105 | (4) |
|
6.2.4 Spatiotemporal Representation Learning |
|
|
109 | (3) |
|
|
112 | (1) |
|
|
113 | (7) |
|
|
113 | (1) |
|
6.3.2 EEG Characteristic Analysis |
|
|
113 | (2) |
|
6.3.3 Representation Learning Framework |
|
|
115 | (5) |
|
|
120 | (3) |
|
|
121 | (1) |
|
6.4.2 Intersubject Transfer Learning |
|
|
121 | (2) |
|
7 Cross-Scenario Classification |
|
|
123 | (26) |
|
|
123 | (1) |
|
7.2 Attention-Based Classification Across Signal Sources |
|
|
124 | (11) |
|
|
124 | (1) |
|
7.2.2 Reinforced Selective Attention Model |
|
|
125 | (9) |
|
|
134 | (1) |
|
7.3 Attention-Based Classification Across Applications |
|
|
135 | (12) |
|
|
135 | (1) |
|
7.3.2 Reinforced Attentive CNN |
|
|
136 | (2) |
|
7.3.3 Evaluation Across Applications |
|
|
138 | (9) |
|
|
147 | (1) |
|
7.4 Transfer Learning Methods |
|
|
147 | (2) |
|
8 Semi-Supervised Classification |
|
|
149 | (18) |
|
|
149 | (12) |
|
|
149 | (3) |
|
8.1.2 Adversarial Variational Embedding Algorithm |
|
|
152 | (5) |
|
|
157 | (4) |
|
|
161 | (1) |
|
|
161 | (3) |
|
|
162 | (1) |
|
|
163 | (1) |
|
|
164 | (1) |
|
8.3 Unsupervised Representations Learning |
|
|
164 | (3) |
Part 4: Typical Deep Learning for EEG-Based BCI Applications |
|
167 | (74) |
|
|
169 | (22) |
|
9.1 EEG-Based Person Identification |
|
|
169 | (13) |
|
|
169 | (4) |
|
9.1.2 EEG Pattern Analysis |
|
|
173 | (2) |
|
|
175 | (6) |
|
|
181 | (1) |
|
9.2 Person Authentication |
|
|
182 | (9) |
|
|
183 | (1) |
|
|
184 | (5) |
|
|
189 | (2) |
|
|
191 | (20) |
|
10.1 Brain2Object: Printing Your Mind |
|
|
191 | (11) |
|
10.1.1 Brain2Object System |
|
|
192 | (6) |
|
|
198 | (1) |
|
|
199 | (2) |
|
|
201 | (1) |
|
10.2 Geometrical Shape Reconstruction |
|
|
202 | (9) |
|
10.2.1 EEG Signal Acquisition |
|
|
203 | (1) |
|
|
204 | (4) |
|
|
208 | (2) |
|
|
210 | (1) |
|
11 Language Interpretation |
|
|
211 | (10) |
|
|
212 | (4) |
|
|
212 | (1) |
|
11.1.2 Deep Feature Learning |
|
|
212 | (3) |
|
11.1.3 Feature Adaptation |
|
|
215 | (1) |
|
11.2 Brain-Controlled Typing System |
|
|
216 | (3) |
|
|
219 | (2) |
|
12 Intent Recognition in Assisted Living |
|
|
221 | (6) |
|
|
221 | (1) |
|
12.2 Orthogonal Array Tuning Method |
|
|
222 | (3) |
|
|
222 | (1) |
|
|
223 | (2) |
|
|
225 | (2) |
|
12.3.1 Mind-Controlled Mobile Robot |
|
|
225 | (1) |
|
12.3.2 Mind-Controlled Appliances |
|
|
226 | (1) |
|
13 Patient-Independent Neurological Disorder Detection |
|
|
227 | (10) |
|
|
227 | (2) |
|
|
229 | (6) |
|
|
229 | (2) |
|
|
231 | (2) |
|
13.2.3 Attention-Based Seizure Diagnosis |
|
|
233 | (1) |
|
|
234 | (1) |
|
|
235 | (1) |
|
|
235 | (2) |
|
14 Future Directions and Conclusion |
|
|
237 | (4) |
|
|
237 | (3) |
|
|
237 | (1) |
|
14.1.2 Subject-Independent Classification |
|
|
238 | (1) |
|
14.1.3 Semi-Supervised and Unsupervised Classification |
|
|
238 | (1) |
|
14.1.4 Hardware Portability |
|
|
239 | (1) |
|
|
240 | (1) |
Bibliography |
|
241 | (32) |
Index |
|
273 | |