|
Part I Machine Learning, NLP, and Speech Introduction |
|
|
|
|
3 | (36) |
|
|
5 | (2) |
|
1.1.1 Supervised Learning |
|
|
5 | (1) |
|
1.1.2 Unsupervised Learning |
|
|
6 | (1) |
|
1.1.3 Semi-Supervised Learning and Active Learning |
|
|
7 | (1) |
|
1.1.4 Transfer Learning and Multitask Learning |
|
|
7 | (1) |
|
1.1.5 Reinforcement Learning |
|
|
7 | (1) |
|
|
7 | (11) |
|
1.2.1 Deep Learning: A Brief History |
|
|
8 | (3) |
|
1.2.2 Natural Language Processing: A Brief History |
|
|
11 | (4) |
|
1.2.3 Automatic Speech Recognition: A Brief History |
|
|
15 | (3) |
|
1.3 Tools, Libraries, Datasets, and Resources for the Practitioners |
|
|
18 | (7) |
|
|
18 | (1) |
|
1.3.2 Natural Language Processing |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
21 | (1) |
|
1.3.5 Online Courses and Resources |
|
|
21 | (1) |
|
|
22 | (3) |
|
1.4 Case Studies and Implementation Details |
|
|
25 | (2) |
|
|
27 | (12) |
|
2 Basics of Machine Learning |
|
|
39 | (48) |
|
|
39 | (1) |
|
2.2 Supervised Learning: Framework and Formal Definitions |
|
|
40 | (2) |
|
2.2.1 Input Space and Samples |
|
|
40 | (1) |
|
2.2.2 Target Function and Labels |
|
|
41 | (1) |
|
2.2.3 Training and Prediction |
|
|
41 | (1) |
|
|
42 | (1) |
|
2.4 Machine Learning Theory |
|
|
43 | (12) |
|
2.4.1 Generalization-Approximation Trade-Off via the Vapnik-Chervonenkis Analysis |
|
|
43 | (3) |
|
2.4.2 Generalization-Approximation Trade-off via the Bias-Variance Analysis |
|
|
46 | (1) |
|
2.4.3 Model Performance and Evaluation Metrics |
|
|
47 | (3) |
|
|
50 | (3) |
|
2.4.5 Model Estimation and Comparisons |
|
|
53 | (1) |
|
2.4.6 Practical Tips for Machine Learning |
|
|
54 | (1) |
|
|
55 | (12) |
|
|
55 | (3) |
|
|
58 | (1) |
|
|
59 | (2) |
|
2.5.4 Logistic Regression |
|
|
61 | (3) |
|
2.5.5 Generative Classifiers |
|
|
64 | (2) |
|
2.5.6 Practical Tips for Linear Algorithms |
|
|
66 | (1) |
|
2.6 Non-linear Algorithms |
|
|
67 | (2) |
|
2.6.1 Support Vector Machines |
|
|
68 | (1) |
|
2.6.2 Other Non-linear Algorithms |
|
|
69 | (1) |
|
2.7 Feature Transformation, Selection, and Dimensionality Reduction |
|
|
69 | (3) |
|
2.7.1 Feature Transformation |
|
|
70 | (1) |
|
2.7.2 Feature Selection and Reduction |
|
|
71 | (1) |
|
2.8 Sequence Data and Modeling |
|
|
72 | (6) |
|
2.8.1 Discrete Time Markov Chains |
|
|
72 | (1) |
|
2.8.2 Discriminative Approach: Hidden Markov Models |
|
|
73 | (2) |
|
2.8.3 Generative Approach: Conditional Random Fields |
|
|
75 | (3) |
|
|
78 | (7) |
|
2.9.1 Software Tools and Libraries |
|
|
78 | (1) |
|
2.9.2 Exploratory Data Analysis (EDA) |
|
|
78 | (1) |
|
2.9.3 Model Training and Hyperparameter Search |
|
|
79 | (4) |
|
2.9.4 Final Training and Testing Models |
|
|
83 | (2) |
|
2.9.5 Exercises for Readers and Practitioners |
|
|
85 | (1) |
|
|
85 | (2) |
|
|
87 | (54) |
|
|
87 | (3) |
|
3.1.1 Computational Linguistics |
|
|
87 | (1) |
|
|
88 | (1) |
|
|
89 | (1) |
|
3.2 Morphological Analysis |
|
|
90 | (2) |
|
|
91 | (1) |
|
|
92 | (1) |
|
3.3 Lexical Representations |
|
|
92 | (4) |
|
|
92 | (1) |
|
|
93 | (1) |
|
|
93 | (1) |
|
|
94 | (2) |
|
3.4 Syntactic Representations |
|
|
96 | (5) |
|
|
97 | (2) |
|
|
99 | (2) |
|
3.5 Semantic Representations |
|
|
101 | (4) |
|
3.5.1 Named Entity Recognition |
|
|
102 | (1) |
|
3.5.2 Relation Extraction |
|
|
103 | (1) |
|
|
104 | (1) |
|
3.5.4 Semantic Role Labeling |
|
|
104 | (1) |
|
3.6 Discourse Representations |
|
|
105 | (1) |
|
|
105 | (1) |
|
|
105 | (1) |
|
|
105 | (1) |
|
3.6.4 Local and Global Coreference |
|
|
106 | (1) |
|
|
106 | (3) |
|
|
107 | (1) |
|
|
107 | (1) |
|
|
108 | (1) |
|
|
108 | (1) |
|
|
109 | (4) |
|
3.8.1 Machine Learning Approach |
|
|
109 | (1) |
|
|
110 | (2) |
|
|
112 | (1) |
|
|
113 | (2) |
|
|
114 | (1) |
|
|
114 | (1) |
|
|
115 | (1) |
|
|
115 | (1) |
|
3.10.2 Statistical Translation |
|
|
116 | (1) |
|
|
116 | (3) |
|
3.11.1 Information Retrieval Based |
|
|
117 | (1) |
|
3.11.2 Knowledge-Based QA |
|
|
118 | (1) |
|
3.11.3 Automated Reasoning |
|
|
118 | (1) |
|
3.12 Automatic Summarization |
|
|
119 | (1) |
|
|
119 | (1) |
|
|
120 | (1) |
|
3.13 Automated Speech Recognition |
|
|
120 | (2) |
|
|
120 | (2) |
|
|
122 | (12) |
|
3.14.1 Software Tools and Libraries |
|
|
123 | (1) |
|
|
123 | (3) |
|
|
126 | (3) |
|
|
129 | (2) |
|
3.14.5 Text Classification |
|
|
131 | (2) |
|
3.14.6 Exercises for Readers and Practitioners |
|
|
133 | (1) |
|
|
134 | (7) |
|
Part II Deep Learning Basics |
|
|
|
4 Basics of Deep Learning |
|
|
141 | (62) |
|
|
141 | (2) |
|
4.2 Perceptron Algorithm Explained |
|
|
143 | (3) |
|
|
143 | (3) |
|
4.2.2 Linear and Non-linear Separability |
|
|
146 | (1) |
|
4.3 Multilayer Perceptron (Neural Networks) |
|
|
146 | (8) |
|
|
147 | (1) |
|
4.3.2 Forward Propagation |
|
|
148 | (1) |
|
|
149 | (1) |
|
|
150 | (2) |
|
|
152 | (1) |
|
4.3.6 Universal Approximation Theorem |
|
|
153 | (1) |
|
|
154 | (11) |
|
4.4.1 Activation Functions |
|
|
155 | (6) |
|
|
161 | (1) |
|
4.4.3 Optimization Methods |
|
|
162 | (3) |
|
|
165 | (10) |
|
|
165 | (1) |
|
4.5.2 Vanishing/Exploding Gradients |
|
|
166 | (1) |
|
4.5.3 Full-Batch and Mini-Batch Gradient Decent |
|
|
167 | (1) |
|
|
167 | (4) |
|
4.5.5 Hyperparameter Selection |
|
|
171 | (1) |
|
4.5.6 Data Availability and Quality |
|
|
172 | (2) |
|
|
174 | (1) |
|
4.6 Unsupervised Deep Learning |
|
|
175 | (8) |
|
4.6.1 Energy-Based Models |
|
|
175 | (1) |
|
4.6.2 Restricted Boltzmann Machines |
|
|
176 | (2) |
|
4.6.3 Deep Belief Networks |
|
|
178 | (1) |
|
|
178 | (4) |
|
|
182 | (1) |
|
4.6.6 Generative Adversarial Networks |
|
|
182 | (1) |
|
4.7 Framework Considerations |
|
|
183 | (4) |
|
|
184 | (1) |
|
4.7.2 Computational Graphs |
|
|
185 | (1) |
|
4.7.3 Reverse-Mode Automatic Differentiation |
|
|
186 | (1) |
|
4.7.4 Static Computational Graphs |
|
|
186 | (1) |
|
4.7.5 Dynamic Computational Graphs |
|
|
187 | (1) |
|
|
187 | (12) |
|
4.8.1 Software Tools and Libraries |
|
|
187 | (1) |
|
4.8.2 Exploratory Data Analysis (EDA) |
|
|
188 | (1) |
|
4.8.3 Supervised Learning |
|
|
189 | (4) |
|
4.8.4 Unsupervised Learning |
|
|
193 | (3) |
|
4.8.5 Classifying with Unsupervised Features |
|
|
196 | (2) |
|
|
198 | (1) |
|
4.8.7 Exercises for Readers and Practitioners |
|
|
198 | (1) |
|
|
199 | (4) |
|
5 Distributed Representations |
|
|
203 | (60) |
|
|
203 | (1) |
|
5.2 Distributional Semantics |
|
|
203 | (19) |
|
|
203 | (2) |
|
5.2.2 Word Representations |
|
|
205 | (1) |
|
5.2.3 Neural Language Models |
|
|
206 | (2) |
|
|
208 | (11) |
|
|
219 | (2) |
|
5.2.6 Spectral Word Embeddings |
|
|
221 | (1) |
|
5.2.7 Multilingual Word Embeddings |
|
|
222 | (1) |
|
5.3 Limitations of Word Embeddings |
|
|
222 | (5) |
|
|
222 | (1) |
|
|
223 | (1) |
|
|
224 | (3) |
|
|
227 | (1) |
|
|
227 | (1) |
|
5.4 Beyond Word Embeddings |
|
|
227 | (11) |
|
|
228 | (1) |
|
5.4.2 Word Vector Quantization |
|
|
228 | (2) |
|
5.4.3 Sentence Embeddings |
|
|
230 | (2) |
|
|
232 | (1) |
|
5.4.5 Retrofitting with Semantic Lexicons |
|
|
233 | (1) |
|
5.4.6 Gaussian Embeddings |
|
|
234 | (2) |
|
5.4.7 Hyperbolic Embeddings |
|
|
236 | (2) |
|
|
238 | (5) |
|
|
239 | (1) |
|
5.5.2 Document Clustering |
|
|
239 | (1) |
|
|
240 | (1) |
|
5.5.4 Text Anomaly Detection |
|
|
241 | (1) |
|
5.5.5 Contextualized Embeddings |
|
|
242 | (1) |
|
|
243 | (16) |
|
5.6.1 Software Tools and Libraries |
|
|
243 | (1) |
|
5.6.2 Exploratory Data Analysis |
|
|
243 | (1) |
|
5.6.3 Learning Word Embeddings |
|
|
244 | (12) |
|
5.6.4 Document Clustering |
|
|
256 | (1) |
|
5.6.5 Word Sense Disambiguation |
|
|
257 | (2) |
|
5.6.6 Exercises for Readers and Practitioners |
|
|
259 | (1) |
|
|
259 | (4) |
|
6 Convolutional Neural Networks |
|
|
263 | (52) |
|
|
263 | (1) |
|
6.2 Basic Building Blocks of CNN |
|
|
264 | (9) |
|
6.2.1 Convolution and Correlation in Linear Time-Invariant Systems |
|
|
264 | (1) |
|
6.2.2 Local Connectivity or Sparse Interactions |
|
|
265 | (1) |
|
|
266 | (1) |
|
6.2.4 Spatial Arrangement |
|
|
266 | (4) |
|
6.2.5 Detector Using Nonlinearity |
|
|
270 | (1) |
|
6.2.6 Pooling and Subsampling |
|
|
271 | (2) |
|
6.3 Forward and Backpropagation in CNN |
|
|
273 | (3) |
|
6.3.1 Gradient with Respect to Weights |
|
|
274 | (1) |
|
6.3.2 Gradient with Respect to the Inputs |
|
|
275 | (1) |
|
|
276 | (1) |
|
|
276 | (5) |
|
6.4.1 Word Embeddings and CNN |
|
|
277 | (3) |
|
6.4.2 Character-Based Representation and CNN |
|
|
280 | (1) |
|
6.5 Classic CNN Architectures |
|
|
281 | (4) |
|
|
282 | (1) |
|
|
283 | (2) |
|
|
285 | (1) |
|
6.6 Modern CNN Architectures |
|
|
285 | (7) |
|
6.6.1 Stacked or Hierarchical CNN |
|
|
286 | (1) |
|
|
287 | (1) |
|
|
288 | (1) |
|
6.6.4 Other CNN Structures |
|
|
289 | (3) |
|
6.7 Applications of CNN in NLP |
|
|
292 | (5) |
|
6.7.1 Text Classification and Categorization |
|
|
293 | (1) |
|
6.7.2 Text Clustering and Topic Mining |
|
|
294 | (1) |
|
|
294 | (1) |
|
6.7.4 Information Extraction |
|
|
294 | (1) |
|
6.7.5 Machine Translation |
|
|
295 | (1) |
|
|
296 | (1) |
|
6.7.7 Question and Answers |
|
|
296 | (1) |
|
6.8 Fast Algorithms for Convolutions |
|
|
297 | (3) |
|
6.8.1 Convolution Theorem and Fast Fourier Transform |
|
|
297 | (1) |
|
6.8.2 Fast Filtering Algorithm |
|
|
297 | (3) |
|
|
300 | (10) |
|
6.9.1 Software Tools and Libraries |
|
|
300 | (1) |
|
6.9.2 Exploratory Data Analysis |
|
|
301 | (1) |
|
6.9.3 Data Preprocessing and Data Splits |
|
|
301 | (2) |
|
6.9.4 CNN Model Experiments |
|
|
303 | (4) |
|
6.9.5 Understanding and Improving the Models |
|
|
307 | (2) |
|
6.9.6 Exercises for Readers and Practitioners |
|
|
309 | (1) |
|
|
310 | (1) |
|
|
310 | (5) |
|
7 Recurrent Neural Networks |
|
|
315 | (54) |
|
|
315 | (1) |
|
7.2 Basic Building Blocks of RNNs |
|
|
316 | (2) |
|
7.2.1 Recurrence and Memory |
|
|
316 | (1) |
|
|
317 | (1) |
|
|
318 | (9) |
|
7.3.1 Forward and Backpropagation in RNNs |
|
|
318 | (5) |
|
7.3.2 Vanishing Gradient Problem and Regularization |
|
|
323 | (4) |
|
7.4 Deep RNN Architectures |
|
|
327 | (6) |
|
|
327 | (1) |
|
|
328 | (1) |
|
7.4.3 Recurrent Highway Networks |
|
|
329 | (1) |
|
|
329 | (2) |
|
|
331 | (1) |
|
7.4.6 Recursive Neural Networks |
|
|
331 | (2) |
|
7.5 Extensions of Recurrent Networks |
|
|
333 | (6) |
|
7.5.1 Sequence-to-Sequence |
|
|
334 | (1) |
|
|
335 | (1) |
|
|
336 | (1) |
|
7.5.4 Transformer Networks |
|
|
337 | (2) |
|
7.6 Applications of RNNs in NLP |
|
|
339 | (9) |
|
7.6.1 Text Classification |
|
|
339 | (1) |
|
7.6.2 Part-of-Speech Tagging and Named Entity Recognition |
|
|
340 | (1) |
|
|
340 | (1) |
|
7.6.4 Topic Modeling and Summarization |
|
|
340 | (1) |
|
|
341 | (1) |
|
|
341 | (1) |
|
|
341 | (2) |
|
7.6.8 Neural Machine Translation |
|
|
343 | (3) |
|
7.6.9 Prediction/Sampling Output |
|
|
346 | (2) |
|
|
348 | (16) |
|
7.7.1 Software Tools and Libraries |
|
|
349 | (1) |
|
7.7.2 Exploratory Data Analysis |
|
|
349 | (6) |
|
|
355 | (7) |
|
|
362 | (1) |
|
7.7.5 Exercises for Readers and Practitioners |
|
|
363 | (1) |
|
|
364 | (1) |
|
7.8.1 Memorization or Generalization |
|
|
364 | (1) |
|
|
365 | (1) |
|
|
365 | (4) |
|
8 Automatic Speech Recognition |
|
|
369 | (38) |
|
|
369 | (1) |
|
|
370 | (7) |
|
|
370 | (1) |
|
|
371 | (1) |
|
|
372 | (4) |
|
8.2.4 Other Feature Types |
|
|
376 | (1) |
|
|
377 | (2) |
|
8.4 Statistical Speech Recognition |
|
|
379 | (8) |
|
8.4.1 Acoustic Model: P(X\W) |
|
|
381 | (4) |
|
8.4.2 LanguageModel: P(W) |
|
|
385 | (1) |
|
|
386 | (1) |
|
|
387 | (1) |
|
|
388 | (3) |
|
|
391 | (12) |
|
8.7.1 Dataset: Common Voice |
|
|
392 | (1) |
|
8.7.2 Software Tools and Libraries |
|
|
392 | (1) |
|
|
392 | (4) |
|
|
396 | (5) |
|
|
401 | (1) |
|
8.7.6 Exercises for Readers and Practitioners |
|
|
402 | (1) |
|
|
403 | (4) |
|
Part III Advanced Deep Learning Techniques for Text and Speech |
|
|
|
9 Attention and Memory Augmented Networks |
|
|
407 | (56) |
|
|
407 | (1) |
|
|
408 | (11) |
|
9.2.1 The Need for Attention Mechanism |
|
|
409 | (1) |
|
|
410 | (1) |
|
9.2.3 Scores-Based Attention |
|
|
411 | (1) |
|
9.2.4 Soft vs. Hard Attention |
|
|
412 | (1) |
|
9.2.5 Local vs. Global Attention |
|
|
412 | (1) |
|
|
413 | (1) |
|
9.2.7 Key-Value Attention |
|
|
414 | (1) |
|
9.2.8 Multi-Head Self-Attention |
|
|
415 | (1) |
|
9.2.9 Hierarchical Attention |
|
|
416 | (2) |
|
9.2.10 Applications of Attention Mechanism in Text and Speech |
|
|
418 | (1) |
|
9.3 Memory Augmented Networks |
|
|
419 | (21) |
|
|
419 | (3) |
|
9.3.2 End-to-End Memory Networks |
|
|
422 | (2) |
|
9.3.3 Neural Turing Machines |
|
|
424 | (4) |
|
9.3.4 Differentiable Neural Computer |
|
|
428 | (3) |
|
9.3.5 Dynamic Memory Networks |
|
|
431 | (3) |
|
9.3.6 Neural Stack, Queues, and Deques |
|
|
434 | (3) |
|
9.3.7 Recurrent Entity Networks |
|
|
437 | (3) |
|
9.3.8 Applications of Memory Augmented Networks in Text and Speech |
|
|
440 | (1) |
|
|
440 | (20) |
|
9.4.1 Attention-Based NMT |
|
|
440 | (1) |
|
9.4.2 Exploratory Data Analysis |
|
|
441 | (9) |
|
9.4.3 Question and Answering |
|
|
450 | (5) |
|
9.4.4 Dynamic Memory Network |
|
|
455 | (4) |
|
9.4.5 Exercises for Readers and Practitioners |
|
|
459 | (1) |
|
|
460 | (3) |
|
10 Transfer Learning: Scenarios, Self-Taught Learning, and Multitask Learning |
|
|
463 | (32) |
|
|
463 | (1) |
|
10.2 Transfer Learning: Definition, Scenarios, and Categorization |
|
|
464 | (3) |
|
|
465 | (1) |
|
10.2.2 Transfer Learning Scenarios |
|
|
466 | (1) |
|
10.2.3 Transfer Learning Categories |
|
|
466 | (1) |
|
10.3 Self-Taught Learning |
|
|
467 | (4) |
|
|
468 | (1) |
|
|
469 | (1) |
|
10.3.3 Applications in NLP |
|
|
470 | (1) |
|
10.3.4 Applications in Speech |
|
|
470 | (1) |
|
|
471 | (11) |
|
|
471 | (9) |
|
|
480 | (1) |
|
10.4.3 Applications in NLP |
|
|
480 | (2) |
|
10.4.4 Applications in Speech Recognition |
|
|
482 | (1) |
|
|
482 | (7) |
|
10.5.1 Software Tools and Libraries |
|
|
482 | (1) |
|
10.5.2 Exploratory Data Analysis |
|
|
483 | (1) |
|
10.5.3 Multitask Learning Experiments and Analysis |
|
|
484 | (5) |
|
10.5.4 Exercises for Readers and Practitioners |
|
|
489 | (1) |
|
|
489 | (6) |
|
11 Transfer Learning: Domain Adaptation |
|
|
495 | (42) |
|
|
495 | (22) |
|
|
496 | (17) |
|
|
513 | (2) |
|
11.1.3 Applications in NLP |
|
|
515 | (1) |
|
11.1.4 Applications in Speech Recognition |
|
|
516 | (1) |
|
11.2 Zero-Shot, One-Shot, and Few-Shot Learning |
|
|
517 | (6) |
|
11.2.1 Zero-Shot Learning |
|
|
517 | (3) |
|
|
520 | (1) |
|
|
521 | (1) |
|
|
522 | (1) |
|
11.2.5 Applications in NLP and Speech Recognition |
|
|
522 | (1) |
|
|
523 | (8) |
|
11.3.1 Software Tools and Libraries |
|
|
524 | (1) |
|
11.3.2 Exploratory Data Analysis |
|
|
524 | (1) |
|
11.3.3 Domain Adaptation Experiments |
|
|
525 | (5) |
|
11.3.4 Exercises for Readers and Practitioners |
|
|
530 | (1) |
|
|
531 | (6) |
|
12 End-to-End Speech Recognition |
|
|
537 | (38) |
|
|
537 | (1) |
|
12.2 Connectionist Temporal Classification (CTC) |
|
|
538 | (8) |
|
12.2.1 End-to-End Phoneme Recognition |
|
|
541 | (1) |
|
|
541 | (2) |
|
|
543 | (1) |
|
|
544 | (1) |
|
|
545 | (1) |
|
|
546 | (3) |
|
12.3.1 Early Seq-to-Seq ASR |
|
|
548 | (1) |
|
12.3.2 Listen, Attend, and Spell (LAS) |
|
|
548 | (1) |
|
|
549 | (2) |
|
|
551 | (8) |
|
12.5.1 Language Models for ASR |
|
|
551 | (1) |
|
|
552 | (3) |
|
12.5.3 Attention Decoding |
|
|
555 | (1) |
|
12.5.4 Combined Language Model Training |
|
|
556 | (1) |
|
12.5.5 Combined CTC-Attention Decoding |
|
|
557 | (1) |
|
|
558 | (1) |
|
12.6 Speech Embeddings and Unsupervised Speech Recognition |
|
|
559 | (2) |
|
|
559 | (1) |
|
|
560 | (1) |
|
|
560 | (1) |
|
|
561 | (10) |
|
12.7.1 Software Tools and Libraries |
|
|
561 | (1) |
|
|
562 | (2) |
|
12.7.3 Language Model Training |
|
|
564 | (2) |
|
|
566 | (4) |
|
|
570 | (1) |
|
12.7.6 Exercises for Readers and Practitioners |
|
|
571 | (1) |
|
|
571 | (4) |
|
13 Deep Reinforcement Learning for Text and Speech |
|
|
575 | (40) |
|
|
575 | (1) |
|
|
575 | (15) |
|
13.2.1 Markov Decision Processes |
|
|
576 | (1) |
|
13.2.2 Value, Q, and Advantage Functions |
|
|
577 | (1) |
|
|
578 | (1) |
|
|
579 | (1) |
|
13.2.5 Dynamic Programming Methods |
|
|
580 | (2) |
|
|
582 | (1) |
|
13.2.7 Temporal Difference Learning |
|
|
583 | (3) |
|
|
586 | (1) |
|
|
587 | (1) |
|
|
588 | (2) |
|
13.3 Deep Reinforcement Learning Algorithms |
|
|
590 | (7) |
|
13.3.1 Why RL for Seq2seq |
|
|
590 | (1) |
|
13.3.2 Deep Policy Gradient |
|
|
591 | (1) |
|
|
592 | (4) |
|
13.3.4 Deep Advantage Actor-Critic |
|
|
596 | (1) |
|
|
597 | (8) |
|
13.4.1 Information Extraction |
|
|
597 | (4) |
|
13.4.2 Text Classification |
|
|
601 | (1) |
|
|
602 | (1) |
|
13.4.4 Text Summarization |
|
|
603 | (2) |
|
13.4.5 Machine Translation |
|
|
605 | (1) |
|
|
605 | (2) |
|
13.5.1 Automatic Speech Recognition |
|
|
606 | (1) |
|
13.5.2 Speech Enhancement and Noise Suppression |
|
|
606 | (1) |
|
|
607 | (5) |
|
13.6.1 Software Tools and Libraries |
|
|
607 | (1) |
|
13.6.2 Text Summarization |
|
|
608 | (1) |
|
13.6.3 Exploratory Data Analysis |
|
|
608 | (4) |
|
13.6.4 Exercises for Readers and Practitioners |
|
|
612 | (1) |
|
|
612 | (3) |
|
|
615 | (4) |
|
End-to-End Architecture Prevalence |
|
|
615 | (1) |
|
|
615 | (1) |
|
|
616 | (1) |
|
Transition Away from Supervised Learning |
|
|
616 | (1) |
|
|
616 | (1) |
|
Model Development and Deployment Process |
|
|
617 | (1) |
|
|
617 | (1) |
|
|
617 | (1) |
|
|
618 | (1) |
|
|
618 | (1) |
Index |
|
619 | |