Atnaujinkite slapukų nuostatas

El. knyga: Deep Learning for Social Media Data Analytics

Edited by , Edited by , Edited by , Edited by
  • Formatas: EPUB+DRM
  • Serija: Studies in Big Data 113
  • Išleidimo metai: 18-Sep-2022
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031108693
  • Formatas: EPUB+DRM
  • Serija: Studies in Big Data 113
  • Išleidimo metai: 18-Sep-2022
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031108693

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This edited book covers ongoing research in both theory and practical applications of using deep learning for social media data. Social networking platforms are overwhelmed by different contents, and their huge amounts of data have enormous potential to influence business, politics, security, planning and other social aspects. Recently, deep learning techniques have had many successful applications in the AI field. The research presented in this book emerges from the conviction that there is still much progress to be made toward exploiting deep learning in the context of social media data analytics. It includes fifteen chapters, organized into four sections that report on original research in network structure analysis, social media text analysis, user behaviour analysis and social media security analysis. This work could serve as a good reference for researchers, as well as a compilation of innovative ideas and solutions for practitioners interested in applying deep learning techniques to social media data analytics.





 
Node Classification using Deep Learning in Social
Networks.- NN-LP-CF: Neural Network based Link Prediction on Social
Networks using Centrality-based Features.- Deep Learning for
Code-Mixed Text Mining in Social Media: A Brief Review.- Convolutional
and Recurrent Neural Networks for Opinion Mining on Drug Reviews.- Text-based
Sentiment Analysis using Deep Learning Techniques.- Social
Sentiment Analysis Using Features based Intelligent Learning Techniques.