Atnaujinkite slapukų nuostatas

El. knyga: Deep Learning with Structured Data

  • Formatas: 264 pages
  • Išleidimo metai: 08-Dec-2020
  • Leidėjas: Manning Publications
  • Kalba: eng
  • ISBN-13: 9781638357179
Kitos knygos pagal šią temą:
  • Formatas: 264 pages
  • Išleidimo metai: 08-Dec-2020
  • Leidėjas: Manning Publications
  • Kalba: eng
  • ISBN-13: 9781638357179
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Deep learning offers the potential to identify complex patterns and relationships hidden in data of all sorts.

Deep Learning with Structured Data shows you how to apply powerful deep learning analysis techniques to the kind of structured, tabular data you'll find in the relational databases that real-world businesses depend on. Filled with practical, relevant applications, this book teaches you how deep learning can augment your existing machine learning and business intelligence systems.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.



Deep learning offers the potential to identify complex patterns and relationships hidden in data of all sorts.

Deep Learning with Structured Data shows you how to apply powerful deep learning analysis techniques to the kind of structured, tabular data you'll find in the relational databases that real-world businesses depend on. Filled with practical, relevant applications, this book teaches you how deep learning can augment your existing machine learning and business intelligence systems.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.
Preface xv
Acknowledgments xvii
About This Book xviii
About The Author xxii
About The Cover Illustration xxiii
1 Why Deep Learnings Structured Data?
1(17)
1.1 Overview of deep learning
2(4)
1.2 Benefits and drawbacks of deep learning
6(3)
1.3 Overview of the deep learning stack
9(1)
1.4 Structured vs. unstructured data
10(2)
1.5 Objections to deep learning with structured data
12(2)
1.6 Why investigate deep learning with a structured data problem?
14(1)
1.7 An overview of the code accompanying this book
14(1)
1.8 What you need to know
15(1)
1.9 Summary
16(2)
2 Introduction To The Example Problem And Pandas Dataframes
18(27)
2.1 Development environment options for deep learning
19(2)
2.2 Code for exploring Pandas
21(1)
2.3 Pandas dataframes in Python
22(2)
2.4 Ingesting CSV files into Pandas dataframes
24(1)
2.5 Using Pandas to do what you would do with SQL
25(3)
2.6 The major example: Predicting streetcar delays
28(2)
2.7 Why is a real-world dataset critical for learning about deep learning?
30(1)
2.8 Format and scope of the input dataset
31(2)
2.9 The destination: An end-to-end solution
33(2)
2.10 More details on the code that makes up the solutions
35(2)
2.11 Development environments: Vanilla vs. deep-learning-enabled
37(1)
2.12 A deeper look at the objections to deep learning
38(3)
2.13 How deep learning has become more accessible
41(1)
2.14 A first taste of training a deep learning model
42(2)
2.15 Summary
44(1)
3 Preparing The Data, Part 1: Exploring And Cleansing The Data
45(22)
3.1 Code for exploring and cleansing the data
46(1)
3.2 Using config files with Python
46(2)
3.3 Ingesting XLS files into a Pandas dataframe
48(4)
3.4 Using pickle to save your Pandas dataframe from one session to another
52(2)
3.5 Exploring the data
54(4)
3.6 Categorizing data into continuous, categorical, and text categories
58(2)
3.7 Cleaning up problems in the dataset: missing data, errors, and guesses
60(5)
3.8 Finding out how much data deep learning needs
65(1)
3.9 Summary
66(1)
4 Preparing The Data, Part 2: Transforming The Data
67(20)
4.1 Code for preparing and transforming the data
68(1)
4.2 Dealing with incorrect values: Routes
68(2)
4.3 Why only one substitute for all bad values?
70(1)
4.4 Dealing with incorrect values: Vehicles
71(1)
4.5 Dealing with inconsistent values: Location
72(2)
4.6 Going the distance: Locations
74(3)
4.7 Fixing type mismatches
77(1)
4.8 Dealing with rows that still contain bad data
78(1)
4.9 Creating derived columns
79(1)
4.10 Preparing non-numeric data to train a deep learning model
80(3)
4.11 Overview of the end-to-end solution
83(3)
4.12 Summary
86(1)
5 Preparing And Building The Model
87(33)
5.1 Data leakage and features that are fair game for training the model
88(1)
5.2 Domain expertise and minimal scoring tests to prevent data leakage
89(1)
5.3 Preventing data leakage in the streetcar delay prediction problem
90(2)
5.4 Code for exploring Keras and building the model
92(1)
5.5 Deriving the dataframe to use to train the model
93(4)
5.6 Transforming the dataframe into the format expected by the Keras model
97(1)
5.7 A brief history of Keras and TensorFlow
98(1)
5.8 Migrating from TensorFlow 1.x to TensorFlow 2
99(1)
5.9 TensorFlow vs. PyTorch
100(1)
5.10 The structure of a deep learning model in Keras
100(4)
5.11 How the data structure defines the Keras model
104(3)
5.12 The power of embeddings
107(2)
5.13 Code to build a Keras model automatically based on the data structure
109(2)
5.14 Exploring your model
111(6)
5.15 Model parameters
117(2)
5.16 Summary
119(1)
6 Training The Model And Running Experiments
120(30)
6.1 Code for training the deep learning model
121(1)
6.2 Reviewing the process of training a deep learning model
121(3)
6.3 Reviewing the overall goal of the streetcar delay prediction model
124(3)
6.4 Selecting the train, validation, and test datasets
127(1)
6.5 Initial training run
127(3)
6.6 Measuring the performance of your model
130(3)
6.7 Keras callbacks: Getting the best out of your training runs
133(7)
6.8 Getting identical results from multiple training runs
140(1)
6.9 Shortcuts to scoring
141(2)
6.10 Explicitly saving trained models
143(1)
6.11 Running a series of training experiments
143(5)
6.12 Summary
148(2)
7 More Experiments With The Trained Model
150(11)
7.1 Code for more experiments with the model
151(1)
7.2 Validating whether removing bad values improves the model
151(1)
7.3 Validating whether embeddings for columns improve the performance of the model
152(1)
7.4 Comparing the deep learning model with XGBoost
153(6)
7.5 Possible next steps for improving the deep learning model
159(1)
7.6 Summary
160(1)
8 Deploying The Model
161(31)
8.1 Overview of model deployment
162(1)
8.2 If deployment is so important, why is it so hard?
163(1)
8.3 Review of one-off scoring
164(1)
8.4 The user experience with web deployment
165(1)
8.5 Steps to deploy your model with web deployment
165(4)
8.6 Behind the scenes with web deployment
169(3)
8.7 The user experience with Facebook Messenger deployment
172(2)
8.8 Behind the scenes with Facebook Messenger deployment
174(1)
8.9 More background on Rasa
175(2)
8.10 Steps to deploy your model in Facebook Messenger with Rasa
177(3)
8.11 Introduction to pipelines
180(3)
8.12 Defining pipelines in the model training phase
183(3)
8.13 Applying pipelines in the scoring phase
186(2)
8.14 Maintaining a model after deployment
188(2)
8.15 Summary
190(2)
9 Recommended Next Steps
192(31)
9.1 Reviewing what we have covered so far
193(1)
9.2 What we could do next with the streetcar delay prediction project
194(1)
9.3 Adding location details to the streetcar delay prediction project
194(4)
9.4 Training our deep learning model with weather data
198(5)
9.5 Adding season or time of day to the streetcar delay prediction project
203(1)
9.6 Imputation: An alternative to removing records with bad values
204(1)
9.7 Making the web deployment of the streetcar delay prediction model generally available
204(2)
9.8 Adapting the streetcar delay prediction model to a new dataset
206(3)
9.9 Preparing the dataset and training the model
209(2)
9.10 Deploying the model with web deployment
211(1)
9.11 Deploying the model with Facebook Messenger
212(3)
9.12 Adapting the approach in this book to a different dataset
215(4)
9.13 Resources for additional learning
219(1)
9.14 Summary
220(3)
Appendix Using Google Colaboratory 223(10)
Index 233
Mark Ryan has 20 years of experience leading teams delivering IBMs premier relational database product. He holds a Master's degree in Computer Science from the University of Toronto.