Atnaujinkite slapukų nuostatas

El. knyga: Delivery and Mixing in the Subsurface: Processes and Design Principles for In Situ Remediation

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This volume is meant to provide the practitioner with information on the natural mixing processes occurring in aquifers as well as to describe basic strategies that can be implemented to enhance mixing in particular cases. For example, when it comes to mixing miscible liquids, one can speed up mixing in the formation by manipulating the flow such as through the use of recirculation wells. Furthermore, much of the mixing can be achieved partially within recirculation wells themselves, where contaminated water is admixed with additives, volatile products may be removed through a vapor mass exchanger, etc. Thus, adding mixing wells can significantly increase the performance of the delivery and mixing system and speed up the process of remediation.

This volume sets out the principles of chemical delivery and mixing systems and their design and implementation in on-site remediation. It is aimed at the decision makers, engineers and hydrogeologists who will select, design and operate these in situ systems.
Chapter 1 Introduction
1(6)
1.1 Background
1(3)
1.2 Overview of the Contents of this Volume
4(1)
1.3 Ongoing Research and Outstanding Challenges
4(3)
References
5(2)
Chapter 2 Chemical And Biological Processes: The Need For Mixing
7(46)
2.1 Introduction
7(1)
2.2 Groundwater Contaminants
7(5)
2.3 Reaction and Mass Transfer Processes
12(9)
2.3.1 Overview
12(1)
2.3.2 Stoichiometry
12(1)
2.3.3 Reaction and Mass-Transfer Processes
13(4)
2.3.4 Reaction Kinetics
17(3)
2.3.5 Summary
20(1)
2.4 Biological Processes
21(15)
2.4.1 Biological Processes
21(3)
2.4.2 Chlorinated Solvents
24(3)
2.4.3 Biological Reaction Kinetics
27(2)
2.4.4 Mass Transfer Limitations
29(2)
2.4.5 Bioaugmentation
31(3)
2.4.6 Organic Bioremediation Example: Edwards AFB, California
34(2)
2.5 Chemical Processes
36(9)
2.5.1 Oxidative Chemical Processes
37(1)
2.5.2 Reductive Chemical Processes
37(1)
2.5.3 Precipitation
38(3)
2.5.4 pH Control
41(4)
2.6 Cosolvent and Surfactant Flushing
45(1)
2.6.1 Cosolvent Flushing
45(1)
2.6.2 Surfactant Flushing
45(1)
2.7 Inorganic Bioremediation Example: Oak Ridge Field Research Center
46(2)
2.8 Summary
48(5)
References
48(5)
Chapter 3 Transport And Mixing
53(24)
3.1 Introduction
53(1)
3.2 Mixing
54(3)
3.2.1 Mass Transfer from Separate Phases
56(1)
3.2.2 Transverse Mixing
56(1)
3.2.3 Longitudinal Mixing and Chromatographic Mixing
56(1)
3.3 Scale Dependency
57(2)
3.4 Pore Scale
59(5)
3.4.1 Flow
60(2)
3.4.2 Advection
62(1)
3.4.3 Molecular Diffusion
62(2)
3.5 Laboratory-Scale Processes
64(7)
3.5.1 Darcy's Law
66(1)
3.5.2 Diffusion
67(1)
3.5.3 Advection-Dispersion Equation
68(1)
3.5.4 Dual-Porosity Models
69(1)
3.5.5 Sorption
70(1)
3.6 Field-Scale Processes
71(1)
3.7 Concluding Remarks
72(5)
References
73(4)
Chapter 4 Hydrogeochemical Models
77(40)
4.1 Introduction
77(1)
4.2 Mixing and Reaction Processes
78(6)
4.2.1 Overview
78(2)
4.2.2 Example Remediation Technologies
80(4)
4.3 Hydrogeochemical Model Governing Equations
84(5)
4.3.1 Solution of Governing Equations
86(3)
4.4 Survey of Available Hydrochemical Models
89(6)
4.4.1 Analytical Models
90(1)
4.4.2 Numerical Models
91(4)
4.5 Calibration and Validation
95(4)
4.6 Case Studies of Model Applications
99(8)
4.6.1 Natural Attenuation of Organic Pollutants
99(3)
4.6.2 Enhanced In Situ Cometabolic Degradation of TCE
102(2)
4.6.3 In Situ Chemical Oxidation of TCE by Potassium Permanganate
104(3)
4.7 Summary and Conclusions
107(10)
References
108(9)
Chapter 5 Travel-Time Based Reactive Transport Modeling For In Situ Subsurface Reactor
117(22)
5.1 Introduction
117(2)
5.2 Residence-Time Theory
119(3)
5.3 Travel-Time Based Reactive Transport
122(1)
5.4 Estimation of Travel-Time Distribution
123(1)
5.5 An Illustrative Example
124(4)
5.6 Discussion and Extensions
128(7)
5.6.1 Spatial Mapping
128(1)
5.6.2 Multiple-Reactor System
129(3)
5.6.3 Mixing Within Reactor
132(1)
5.6.4 Chemical Heterogeneities
133(1)
5.6.5 Reaction Rate Estimation
134(1)
5.7 Summary
135(4)
References
135(4)
Chapter 6 Recirculation Systems
139(30)
6.1 Introduction
139(1)
6.2 Types of Recirculation Systems
139(5)
6.2.1 Injection-Extraction
140(1)
6.2.2 Groundwater Circulation Wells (GCWs)
141(1)
6.2.3 Tandem Recirculating Wells (TRWs)
142(2)
6.2.4 System Cost Comparisons
144(1)
6.3 Design Principles
144(16)
6.3.1 Effect of Remediation Goal
144(1)
6.3.2 Environmental Factors to Consider in Design
145(2)
6.3.3 Engineering Factors to Consider in Design
147(5)
6.3.4 Modeling Applications
152(2)
6.3.5 Example Designs
154(6)
6.4 System Operation and Maintenance (O&M)
160(2)
6.4.1 Process and Performance Monitoring
160(2)
6.4.2 System Optimization
162(1)
6.5 Case Studies
162(2)
6.5.1 Injection-Extraction Application: Schoolcraft, Michigan Site
162(1)
6.5.2 Groundwater Circulation Well Application: Port Hueneme Naval Exchange Site, California
163(1)
6.5.3 Tandem Recirculating Well Application (Trichloroethene Bioremediation at Edwards AFB, California)
163(1)
6.6 Conclusions
164(5)
References
165(4)
Chapter 7 Permeable Barrier Walls
169(24)
7.1 Introduction
169(1)
7.2 Reactive Materials
170(7)
7.2.1 Granular Metallic Iron
171(3)
7.2.2 Organic Carbon Amendments
174(1)
7.2.3 Oxygen Addition
175(1)
7.2.4 Sorptive Materials
175(1)
7.2.5 Other Materials
176(1)
7.3 Design Considerations
177(2)
7.3.1 Reaction Rates
177(1)
7.3.2 Hydrogeologic Considerations
178(1)
7.4 Long-Term Performance
179(3)
7.4.1 Granular Iron
180(2)
7.5 Methods of Installation
182(3)
7.5.1 PRB Configuration
182(1)
7.5.2 Construction Methods
183(2)
7.6 Summary Comments
185(8)
References
186(7)
Chapter 8 In Situ Sparging For Delivery Of Gases In The Subsurface
193(24)
8.1 Introduction
193(1)
8.2 Brief Overview of the Physics of In Situ Sparging
194(1)
8.3 Applications of Gas Delivery Systems
195(2)
8.3.1 Air Biosparging
195(1)
8.3.2 Oxygen Biosparging
195(1)
8.3.3 Cometabolic Biosparging
195(1)
8.3.4 Gas Injection of Chemical Oxidants
195(2)
8.4 Design Principles
197(6)
8.4.1 Conceptual Design
197(1)
8.4.2 Pilot Testing
198(4)
8.4.3 System Design
202(1)
8.4.4 System Operation and Maintenance
202(1)
8.4.5 Performance Monitoring
203(1)
8.5 Case Studies
203(10)
8.5.1 Air Biosparging; Environmental Security Technology Certification Program (ESTCP) Multi-Site In Situ Air Sparging Project
203(4)
8.5.2 Oxygen Biosparging: Methyl Tertiary-Butyl Ether (MTBE) Biodegradation at Port Hueneme NAS, California
207(2)
8.5.3 Cometabolic Biosparging: McClellan AFB, California
209(4)
8.6 Summary
213(4)
References
215(2)
Chapter 9 Intrinsic Remediation In Natural-Gradient Systems
217(22)
9.1 Introduction
217(2)
9.2 Analytical Solutions for Zero- and First-Order Decay in Steady State
219(1)
9.3 Implicit Assumptions of Zero- and First-Order Decay
220(2)
9.4 General Outline of Computing Mixing-Controlled Reactive Transport
222(2)
9.4.1 Direct Simulation of Coupled Systems
222(1)
9.4.2 Simulation Via Mixing Ratios
222(2)
9.5 Determining Concentrations of Individual Reactive Species from Total Concentrations
224(12)
9.5.1 Chemical Equilibrium of Dissolved Compounds
224(3)
9.5.2 Chemical Equilibrium in the Presence of a Mineral Phase
227(2)
9.5.3 Instantaneous, Complete, Irreversible Reaction
229(3)
9.5.4 Biokinetic Irreversible Reaction in Steady State
232(4)
9.6 Summary and Conclusions
236(3)
References
237(2)
Chapter 10 Source Remediation Challenges
239(38)
10.1 Introduction and Background
239(5)
10.2 DNAPL Source Zone Architecture: Evolution and Characterization
244(7)
10.2.1 Influence of DNAPL and Subsurface Properties on Source Zone Architecture
244(2)
10.2.2 Characterization Tools
246(3)
10.2.3 Source Zone Architecture Metrics
249(2)
10.3 Mass Flux from DNAPL Source Zones
251(11)
10.3.1 Influence of Architecture on Mass Discharge and Plume Response
251(3)
10.3.2 Tools for Mass Flux Quantification
254(8)
10.4 Partial Mass Removal and Combined Remedies
262(2)
10.4.1 Benefits of Partial Source Removal
262(1)
10.4.2 Combined Remedies
262(2)
10.5 Conclusion
264(13)
References
266(11)
Appendix A List of Acronyms and Abbreviations 277(4)
Appendix B Unit Conversion Table 281(2)
Appendix C Glossary 283(28)
Index 311