Atnaujinkite slapukų nuostatas

El. knyga: Dependent Data in Social Sciences Research: Forms, Issues, and Methods of Analysis

Edited by , Edited by , Edited by
  • Formatas: PDF+DRM
  • Išleidimo metai: 21-Oct-2024
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031563188
  • Formatas: PDF+DRM
  • Išleidimo metai: 21-Oct-2024
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031563188

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book covers the following subjects: growth curve modeling, directional dependence, dyadic data modeling, item response modeling (IRT), and other methods for the analysis of dependent data (e.g., approaches for modeling cross-section dependence, multidimensional scaling techniques, and mixed models). It presents contributions on handling data in which the postulate of independence in the data matrix is violated. When this postulate is violated and when the methods assuming independence are still applied, the estimated parameters are likely to be biased, and statistical decisions are very likely to be incorrect. Problems associated with dependence in data have been known for a long time, and led to the development of tailored methods for the analysis of dependent data in various areas of statistical analysis. These include, for example, methods for the analysis of longitudinal data, corrections for dependency, and corrections for degrees of freedom. 

Researchers and graduate students in the social and behavioral sciences, education, econometrics, and medicine will find this up-to-date overview of modern statistical approaches for dealing with problems related to dependent data particularly useful.

Growth Curve Modeling.- Directional Dependence.- Dydatic Data Modeling.- Item Response Modeling.- Other Methods for the Analyses of Dependent Data.

Mark Stemmler is Professor at Friedrich Alexander University Erlangen-Nuremberg (FAU), Department of Psychology Wolfgang Wiedermann is Associate Professor, College of Education and Human Development, Co-Director of the Methodology Branch of the Missouri Prevention Science Institute, University of Missouri-Columbia (US). Francis L. Huang is Associate Professor, College of Education and Human Development, Co-Director of the Methodology Branch of the Missouri Prevention Science Institute, University of Missouri-Columbia (US).