Atnaujinkite slapukų nuostatas

El. knyga: Design and Analysis of Composite Structures for Automotive Applications: Chassis and Drivetrain

  • Formatas: PDF+DRM
  • Serija: Automotive Series
  • Išleidimo metai: 01-Apr-2019
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781119513841
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Serija: Automotive Series
  • Išleidimo metai: 01-Apr-2019
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781119513841
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

A design reference for engineers developing composite components for automotive chassis, suspension, and drivetrain applications

This book provides a theoretical background for the development of elements of car suspensions. It begins with a description of the elastic-kinematics of the vehicle and closed form solutions for the vertical and lateral dynamics. It evaluates the vertical, lateral, and roll stiffness of the vehicle, and explains the necessity of the modelling of the vehicle stiffness. The composite materials for the suspension and powertrain design are discussed and their mechanical properties are provided. The book also looks at the basic principles for the design optimization using composite materials and mass reduction principles. Additionally, references and conclusions are presented in each chapter.

Design and Analysis of Composite Structures for Automotive Applications: Chassis and Drivetrain offers complete coverage of chassis components made of composite materials and covers elastokinematics and component compliances of vehicles. It looks at parts made of composite materials such as stabilizer bars, wheels, half-axes, springs, and semi-trail axles. The book also provides information on leaf spring assembly for motor vehicles and motor vehicle springs comprising composite materials.

  • Covers the basic principles for the design optimization using composite materials and mass reduction principles
  • Evaluates the vertical, lateral, and roll stiffness of the vehicle, and explains the modelling of the vehicle stiffness
  • Discusses the composite materials for the suspension and powertrain design
  • Features closed form solutions of problems for car dynamics explained in details and illustrated pictorially

Design and Analysis of Composite Structures for Automotive Applications: Chassis and Drivetrain is recommended primarily for engineers dealing with suspension design and development, and those who graduated from automotive or mechanical engineering courses in technical high school, or in other higher engineering schools. 

Foreword xiii
Series Preface xv
List of Symbols and Abbreviations xvii
Introduction xxiii
About the Companion Website xxxv
1 Elastic Anisotropic Behavior of Composite Materials 1(20)
1.1 Anisotropic Elasticity of Composite Materials
1(6)
1.1.1 Fourth Rank Tensor Notation of Hooke's Law
1(1)
1.1.2 Voigt's Matrix Notation of Hooke's Law
2(3)
1.1.3 Kelvin's Matrix Notation of Hooke's Law
5(2)
1.2 Unidirectional Fiber Bundle
7(3)
1.2.1 Components of a Unidirectional Fiber Bundle
7(1)
1.2.2 Elastic Properties of a Unidirectional Fiber Bundle
7(1)
1.2.3 Effective Elastic Constants of Unidirectional Composites
8(2)
1.3 Rotational Transformations of Material Laws, Stress and Strain
10(4)
1.3.1 Rotation of Fourth Rank Elasticity Tensors
11(1)
1.3.2 Rotation of Elasticity Matrices in Voigt's Notation
11(2)
1.3.3 Rotation of Elasticity Matrices in Kelvin's Notation
13(1)
1.4 Elasticity Matrices for Laminated Plates
14(3)
1.4.1 Voigt's Matrix Notation for Anisotropic Plates
14(1)
1.4.2 Rotation of Matrices in Voigt's Notation
15(1)
1.4.3 Kelvin's Matrix Notation for Anisotropic Plates
15(1)
1.4.4 Rotation of Matrices in Kelvin's Notation
16(1)
1.5 Coupling Effects of Anisotropic Laminates
17(1)
1.5.1 Orthotropic Laminate Without Coupling
17(1)
1.5.2 Anisotropic Laminate Without Coupling
17(1)
1.5.3 Anisotropic Laminate With Coupling
17(1)
1.5.4 Coupling Effects in Laminated Thin-Walled Sections
18(1)
1.6 Conclusions
18(1)
References
19(2)
2 Phenomenological Failure Criteria of Composites 21(24)
2.1 Phenomenological Failure Criteria
21(12)
2.1.1 Criteria for Static Failure Behavior
21(1)
2.1.2 Stress Failure Criteria for Isotropic Homogenous Materials
21(1)
2.1.3 Phenomenological Failure Criteria for Composites
22(1)
2.1.4 Phenomenological Criteria Without Stress Coupling
23(1)
2.1.4.1 Criterion of Maximum Averaged Stresses
23(1)
2.1.4.2 Criterion of Maximum Averaged Strains
24(1)
2.1.5 Phenomenological Criteria with Stress Coupling
24(9)
2.1.5.1 Mises-Hill Anisotropic Failure Criterion
24(2)
2.1.5.2 Pressure-Sensitive Mises-Hill Anisotropic Failure Criterion
26(1)
2.1.5.3 Tensor-Polynomial Failure Criterion
27(3)
2.1.5.4 Tsai-Wu Criterion
30(1)
2.1.5.5 Assessment of Coefficients in Tensor-Polynomial Criteria
30(3)
2.2 Differentiating Criteria
33(2)
2.2.1 Fiber and Intermediate Break Criteria
33(1)
2.2.2 Hashin Strength Criterion
33(2)
2.2.3 Delamination Criteria
35(1)
2.3 Physically Based Failure Criteria
35(2)
2.3.1 Puck Criterion
35(1)
2.3.2 Cuntze Criterion
36(1)
2.4 Rotational Transformation of Anisotropic Failure Criteria
37(3)
2.5 Conclusions
40(1)
References
40(5)
3 Micromechanical Failure Criteria of Composites 45(60)
3.1 Pullout of Fibers from the Elastic-Plastic Matrix
45(15)
3.1.1 Axial Tension of Fiber and Matrix
45(6)
3.1.2 Shear Stresses in Matrix Cylinders
51(2)
3.1.3 Coupled Elongation of Fibers and Matrix
53(1)
3.1.4 Failures in Matrix and Fibers
54(3)
3.1.4.1 Equations for Mean Axial Displacements of Fibers and Matrix
54(2)
3.1.4.2 Solutions of Equations for Mean Axial Displacements of Fibers and Matrix
56(1)
3.1.5 Rupture of Matrix and Pullout of Fibers from Crack Edges in a Matrix
57(2)
3.1.5.1 Elastic Elongation (Case I)
57(1)
3.1.5.2 Plastic Sliding on the Fiber Surface (Case II)
58(1)
3.1.5.3 Fiber Breakage (Case III)
58(1)
3.1.6 Rupture of Fibers, Matrix Joints and Crack Edges
59(1)
3.2 Crack Bridging in Elastic-Plastic Unidirectional Composites
60(15)
3.2.1 Crack Bridging in Unidirectional Fiber-Reinforced Composites
60(1)
3.2.2 Matrix Crack Growth
61(1)
3.2.3 Fiber Crack Growth
62(3)
3.2.4 Penny-Shaped Crack
65(7)
3.2.4.1 Crack in a Transversal-Isotropic Medium
65(1)
3.2.4.2 Mechanisms of the Fracture Process
66(1)
3.2.4.3 Crack Bridging in an Orthotropic Body With Disk Crack
66(2)
3.2.4.4 Solution to an Axially Symmetric Crack Problem
68(4)
3.2.5 Plane Crack Problem
72(3)
3.2.5.1 Equations of the Plane Crack Problem
72(2)
3.2.5.2 Solution to the Plane Crack Problem
74(1)
3.3 Debonding of Fibers in Unidirectional Composites
75(23)
3.3.1 Axial Deformation of Unidirectional Fiber Composites
75(4)
3.3.2 Stresses in Unidirectional Composite in Cases of Ideal Debonding or Adhesion
79(5)
3.3.2.1 Equations of an Axially Loaded Unidirectional Compound Medium (A)
79(3)
3.3.2.2 Total Debonding (B)
82(1)
3.3.2.3 Ideal Adhesion (C)
83(1)
3.3.3 Stresses in a Unidirectional Composite in a Case of Partial Debonding
84(5)
3.3.3.1 Partial Radial Load on the Fiber Surface
84(1)
3.3.3.2 Partial Radial Load on the Matrix Cavity Surface
84(1)
3.3.3.3 Partial Debonding With Central Adhesion Region (D)
85(3)
3.3.3.4 Partial Debonding With Central Debonding Region (E)
88(1)
3.3.3.5 Semi-Infinite Debonding With Central Debonding Region (F)
89(1)
3.3.4 Contact Problem for a Finite Adhesion Region
89(4)
3.3.5 Debonding of a Semi-Infinite Adhesion Region
93(2)
3.3.6 Debonding of Fibers from a Matrix Under Cyclic Deformation
95(3)
3.4 Conclusions
98(1)
References
98(7)
4 Optimization Principles for Structural Elements Made of Composites 105(24)
4.1 Stiffness Optimization of Anisotropic Structural Elements
105(5)
4.1.1 Optimization Problem
105(1)
4.1.2 Optimality Conditions
106(3)
4.1.3 Optimal Solutions in Anti-Plane Elasticity
109(1)
4.1.4 Optimal Solutions in Plane Elasticity
109(1)
4.2 Optimization of Strength and Loading Capacity of Anisotropic Elements
110(6)
4.2.1 Optimization Problem
110(3)
4.2.2 Optimality Conditions
113(1)
4.2.3 Optimal Solutions in Anti-Plane Elasticity
114(1)
4.2.4 Optimal Solutions in Plane Elasticity
114(2)
4.3 Optimization of Accumulated Elastic Energy in Flexible Anisotropic Elements
116(3)
4.3.1 Optimization Problem
116(1)
4.3.2 Optimality Conditions
117(1)
4.3.3 Optimal Solutions in Anti-Plane Elasticity
118(1)
4.3.4 Optimal Solutions in Plane Elasticity
119(1)
4.4 Optimal Anisotropy in a Twisted Rod
119(3)
4.5 Optimal Anisotropy of Bending Console
122(1)
4.6 Optimization of Plates in Bending
123(2)
4.7 Conclusions
125(1)
References
125(4)
5 Optimization of Composite Driveshaft 129(26)
5.1 Torsion of Anisotropic Shafts With Solid Cross-Sections
129(3)
5.2 Thin-Walled Anisotropic Driveshaft with Closed Profile
132(3)
5.2.1 Geometry of Cross-Section
132(1)
5.2.2 Main Kinematic Hypothesis
133(2)
5.3 Deformation of a Composite Thin-Walled Rod
135(6)
5.3.1 Equations of Deformation of a Anisotropic Thin-Walled Rod
135(3)
5.3.2 Boundary Conditions
138(2)
5.3.2.1 Ideal Fixing
138(1)
5.3.2.2 Ideally Free End
138(2)
5.3.2.3 Boundary Conditions of the Intermediate Type
140(1)
5.3.3 Governing Equations in Special Cases of Symmetry
140(1)
5.3.3.1 Orthotropic Material
140(1)
5.3.3.2 Constant Elastic Properties Along the Arc of a Cross-Section
140(1)
5.3.4 Symmetry of Section
140(1)
5.4 Buckling of Composite Driveshafts Under a Twist Moment
141(5)
5.4.1 Greenhill's Buckling of Driveshafts
141(2)
5.4.2 Optimal Shape of the Solid Cross-Section for Driveshaft
143(1)
5.4.3 Hollow Circular and Triangular Cross-Sections
144(2)
5.5 Patents for Composite Driveshafts
146(4)
5.6 Conclusions
150(1)
References
150(5)
6 Dynamics of a Vehicle with Rigid Structural Elements of Chassis 155(28)
6.1 Classification of Wheel Suspensions
155(4)
6.1.1 Common Designs of Suspensions
155(1)
6.1.2 Types of Twist-Beam Axles
156(1)
6.1.3 Kinematics of Wheel Suspensions
157(2)
6.2 Fundamental Models in Vehicle Dynamics
159(8)
6.2.1 Basic Variables of Vehicle Dynamics
159(2)
6.2.2 Coordinate Systems of Vehicle and Local Coordinate Systems
161(1)
6.2.2.1 Earth-Fixed Coordinate System
161(1)
6.2.2.2 Vehicle-Fixed Coordinate System
162(1)
6.2.2.3 Horizontal Coordinate System
162(1)
6.2.2.4 Wheel Coordinate System
162(1)
6.2.3 Angle Definitions
162(1)
6.2.4 Components of Force and Moments in Car Dynamics
163(1)
6.2.5 Degrees of Freedom of a Vehicle
163(4)
6.3 Forces Between Tires and Road
167(3)
6.3.1 Tire Slip
167(1)
6.3.2 Side Slip Curve and Lateral Force Properties
168(2)
6.4 Dynamic Equations of a Single-Track Model
170(12)
6.4.1 Hypotheses of a Single-Track Model
170(1)
6.4.2 Moments and Forces in a Single-Track Model
171(2)
6.4.3 Balance of Forces and Moments in a Single-Track Model
173(1)
6.4.4 Steady Cornering
174(5)
6.4.4.1 Necessary Steer Angle for Steady Cornering
174(1)
6.4.4.2 Yaw Gain Factor and Steer Angle Gradient
175(1)
6.4.4.3 Classification of Self-Steering Behavior
176(3)
6.4.5 Non-Steady Cornering
179(2)
6.4.5.1 Equations of Non-Stationary Cornering
179(1)
6.4.5.2 Oscillatory Behavior of Vehicle During Non-Steady Cornering
180(1)
6.4.6 Anti-Roll Bars Made of Composite Materials
181(1)
6.5 Conclusions
182(1)
References
182(1)
7 Dynamics of a Vehicle With Flexible, Anisotropic Structural Elements of Chassis 183(34)
7.1 Effects of Body and Chassis Elasticity on Vehicle Dynamics
183(5)
7.1.1 Influence of Body Stiffness on Vehicle Dynamics
183(1)
7.1.2 Lateral Dynamics of Vehicles With Stiff Rear Axles
184(1)
7.1.3 Induced Effects on Wheel Orientation and Positioning of Vehicles with Flexible Rear Axle
185(3)
7.2 Self-Steering Behavior of a Vehicle With Coupling of Bending and Torsion
188(8)
7.2.1 Countersteering for Vehicles with Twist-Beam Axles
188(4)
7.2.1.1 Countersteering Mechanisms
188(2)
7.2.1.2 Countersteering by Anisotropic Coupling of Bending and Torsion
190(2)
7.2.2 Bending-Twist Coupling of a Countersteering Twist-Beam Axle
192(1)
7.2.3 Roll Angle of Vehicle
193(3)
7.2.3.1 Relationship Between Roll Angle and Centrifugal Force
193(1)
7.2.3.2 Lateral Reaction Forces on Wheels
193(1)
7.2.3.3 Steer Angles on Front Wheels
194(1)
7.2.3.4 Steer Angles on Rear Wheels
194(2)
7.3 Steady Cornering of a Flexible Vehicle
196(3)
7.3.1 Stationary Cornering of a Car With a Flexible Chassis
196(1)
7.3.2 Necessary Steer Angles for Coupling and Flexibility of Chassis
196(3)
7.3.2.1 Limit Case: Lateral Acceleration Vanishes
196(1)
7.3.2.2 Absolutely Rigid Front and Rear Wheel Suspensions
197(1)
7.3.2.3 Bending and Torsion of a Twist Member Completely Decoupled
197(1)
7.3.2.4 General Case of Coupling Between Bending and Torsion of a Twist Member
198(1)
7.3.2.5 Neutral Steering Caused by Coupling Between Bending and Torsion of a Twist Member
198(1)
7.4 Estimation of Coupling Constant for a Twist Member
199(4)
7.4.1 Coupling Between Vehicle Roll Angle and Twist of Cross-Member
199(1)
7.4.2 Stiffness Parameters of a Twist-Beam Axle
200(3)
7.4.2.1 Roll Spring Rate
200(1)
7.4.2.2 Lateral Stiffness
201(2)
7.4.2.3 Camber Stiffness
203(1)
7.5 Design of the Countersteering Twist-Beam Axle
203(8)
7.5.1 Requirements for a Countersteering Twist-Beam Axle
203(2)
7.5.2 Selection and Calculation of the Cross-Section for the Cross-Member
205(3)
7.5.3 Elements of a Countersteering Twist-Beam Axle
208(3)
7.6 Patents on Twist-Beam Axles
211(3)
7.7 Conclusions
214(1)
References
214(3)
8 Design and Optimization of Composite Springs 217(38)
8.1 Design and Optimization of Anisotropic Helical Springs
217(16)
8.1.1 Forces and Moments in Helical Composite Springs
217(3)
8.1.2 Symmetrically Designed Solid Bar With Circular Cross-Section
220(3)
8.1.3 Stiffness and Stored Energy of Helical Composite Springs
223(2)
8.1.4 Spring Rates of Helical Composite Springs
225(3)
8.1.5 Helical Composite Springs of Minimal Mass
228(3)
8.1.5.1 Optimization Problem
228(1)
8.1.5.2 Optimal Composite Spring for the Anisotropic Mises-Hill Strength Criterion
228(3)
8.1.6 Axial and Twist Vibrations of Helical Springs
231(2)
8.2 Conical Springs Made of Composite Material
233(11)
8.2.1 Geometry of an Anisotropic Conical Spring in an Undeformed State
233(2)
8.2.2 Curvature and Strain Deviations
235(1)
8.2.3 Thin-Walled Conical Shells Made of Anisotropic Materials
236(1)
8.2.4 Variation Principle
237(2)
8.2.5 Structural Optimization of a Conical Spring Due to Ply Orientation
239(2)
8.2.6 Conical Spring Made of Orthotropic Material
241(2)
8.2.7 Bounds for Stiffness of a Spring Made of Orthotropic Material
243(1)
8.3 Alternative Concepts for Chassis Springs Made of Composites
244(4)
8.4 Conclusions
248(1)
References
249(6)
9 Equivalent Beams of Helical Anisotropic Springs 255(14)
9.1 Helical Compression Springs Made of Composite Materials
255(5)
9.1.1 Statics of the Equivalent Beam for an Anisotropic Spring
255(3)
9.1.2 Dynamics of an Equivalent Beam for an Anisotropic Spring
258(2)
9.2 Transverse Vibrations of a Composite Spring
260(5)
9.2.1 Separation of Variables
260(2)
9.2.2 Fundamental Frequencies of Transversal Vibrations
262(2)
9.2.3 Transverse Vibrations of a Symmetrically Stacked Helical Spring
264(1)
9.3 Side Buckling of a Helical Composite Spring
265(2)
9.3.1 Buckling Under Axial Force
265(1)
9.3.2 Simplified Formulas for Buckling of a Symmetrically Stacked Helical Spring
266(1)
9.4 Conclusions
267(1)
References
267(2)
10 Composite Leaf Springs 269(20)
10.1 Longitudinally Mounted Leaf Springs for Solid Axles
269(6)
10.1.1 Predominantly Bending-Loaded Leaf Springs
269(1)
10.1.2 Moments and Forces of Leaf Springs in a Pure Bending State
270(2)
10.1.3 Optimization of Leaf Springs for an Anisotropic Mises-Hill Criterion
272(3)
10.2 Leaf-Tension Springs
275(3)
10.2.1 Combined Bending and Tension of a Spring
275(2)
10.2.2 Forces and Rates of Leaf-Tension Springs
277(1)
10.3 Transversally Mounted Leaf Springs
278(8)
10.3.1 Axle Concepts of Transverse Leaf Springs
278(2)
10.3.2 Analysis of a Transverse Leaf Spring
280(3)
10.3.3 Examples and Patents for Transversely Mounted Leaf Springs
283(3)
10.4 Conclusions
286(1)
References
287(2)
11 Meander-Shaped Springs 289(28)
11.1 Meander-Shaped Compression Springs for Automotive Suspensions
289(5)
11.1.1 Bending Stress State of Corrugated Springs
289(3)
11.1.2 "Equivalent Beam" of a Meander Spring
292(1)
11.1.3 Axial and Lateral Stiffness of Corrugated Springs
292(1)
11.1.4 Effective Spring Constants of Meander and Coil Springs for Bending and Compression
293(1)
11.2 Multiarc-Profiled Spring Under Axial Compressive Load
294(5)
11.2.1 Multiarc Meander Spring With Constant Cross-Section
294(3)
11.2.2 Multiarc Meander Spring With Optimal Cross-Section
297(1)
11.2.3 Comparison of Masses for Fixed Spring Rate and Stress
298(1)
11.3 Sinusoidal Spring Under Compressive Axial Load
299(4)
11.3.1 Sinusoidal Meander Spring With Constant Cross-Section
299(2)
11.3.2 Sinusoidal Meander Spring With Optimal Cross-Section
301(1)
11.3.3 Comparison of Masses for Fixed Spring Rate and Stress
302(1)
11.4 Bending Stiffness of Meander Spring With a Constant Cross-Section
303(1)
11.4.1 Bending Stiffness of a Multiarc Meander Spring With a Constant Cross-Section
303(1)
11.4.2 Bending Stiffness of a Sinusoidal Meander Spring with a Constant Cross-Section
303(1)
11.5 Stability of Corrugated Springs
304(3)
11.5.1 Euler's Buckling of an Axially Compressed Rod
304(2)
11.5.2 Side Buckling of Meander Springs
306(1)
11.6 Patents for Chassis Springs Made of Composites in Meandering Form
307(7)
11.7 Conclusions
314(1)
References
315(2)
12 Hereditary Mechanics of Composite Springs and Driveshafts 317(14)
12.1 Elements of Hereditary Mechanics of Composite Materials
317(5)
12.1.1 Mechanisms of Time-Dependent Deformation of Composites
317(1)
12.1.2 Linear Viscoelasticity of Composites
318(1)
12.1.3 Nonlinear Creep Mechanics of Anisotropic Materials
319(2)
12.1.4 Anisotropic Norton-Bailey Law
321(1)
12.2 Creep and Relaxation of Twisted Composite Shafts
322(1)
12.2.1 Constitutive Equations for Relaxation in Torsion of Anisotropic Shafts
322(1)
12.2.2 Torque Relaxation for an Anisotropic Norton-Bailey Law
322(1)
12.3 Creep and Relaxation of Composite Helical Coiled Springs
323(2)
12.3.1 Compression and Tension Composite Springs
323(1)
12.3.2 Relaxation of Helical Composite Springs
324(1)
12.3.3 Creep of Helical Composite Compression Springs
324(1)
12.4 Creep and Relaxation of Composite Springs in a State of Pure Bending
325(2)
12.4.1 Constitutive Equations for Bending Relaxation
325(1)
12.4.2 Relaxation of the Bending Moment for the Anisotropic Norton-Bailey Law
326(1)
12.4.3 Creep in a State of Bending
326(1)
12.5 Conclusions
327(1)
References
327(4)
Appendix A Mechanical Properties of Composites 331(6)
A.1 Fibers
331(1)
A.1.1 Glass Fibers
331(1)
A.1.2 Carbon Fibers
331(1)
A.1.3 Aramid Fibers
331(1)
A.2 Physical Properties of Resin
332(2)
A.3 Laminates
334(1)
A.3.1 Unidirectional Fiber-Reinforced Composite Material
334(1)
A.3.2 Fabric
334(1)
A.3.3 Non-Woven Fabric
334(1)
References
335(2)
Appendix B Anisotropic Elasticity 337(6)
B.1 Elastic Orthotropic Body
337(1)
B.2 Distortion Energy and Supplementary Energy
338(1)
B.3 Plane Elasticity Problems
339(1)
B.3.1 Plane Strain State
339(1)
B.3.2 Plane Stress State
339(1)
B.4 Generalized Airy Stress Function
340(3)
B.4.1 Plane Stress State
340(1)
B.4.2 Plane Strain State
340(1)
B.4.3 Rotationally Symmetric Elasticity Problems
340(3)
Appendix C Integral Transforms in Elasticity 343(8)
C.1 One-Dimensional Integral Transform
343(1)
C.2 Two-Dimensional Fourier Transform
344(1)
C.3 Potential Functions for Plane Elasticity Problems
344(2)
C.4 Rotationally Symmetric, Spatial Elasticity Problems
346(2)
C.5 Application of the Fourier Transformation to Plane Elasticity Problems
348(1)
C.6 Application of the Hankel Transformation to Spatial, Rotation-Symmetric Elasticity Problems
349(2)
Index 351
VLADIMIR KOBELEV, PHD, is a professor of mechanical engineering at the University of Siegen in Germany. He is a member of the International Society for Structural and Multidisciplinary Optimization and EUROMECH. He has authored three other books, including Durability of Springs, and has contributed over 60 articles to international scientific journals.