Preface |
|
xiii | |
|
|
1 | (30) |
|
|
1 | (3) |
|
|
4 | (1) |
|
1.3 Principles of Design and Analysis |
|
|
5 | (4) |
|
1.4 Experiments and Observational Studies |
|
|
9 | (2) |
|
1.5 Illustrative Applications of Principles |
|
|
11 | (1) |
|
1.6 Experiments in the Health Sciences |
|
|
12 | (3) |
|
|
15 | (3) |
|
|
15 | (1) |
|
1.7.2 Adaptive Allocation Techniques |
|
|
16 | (2) |
|
1.8 Sample Size Calculations |
|
|
18 | (2) |
|
1.9 Statistical Models for the Data |
|
|
20 | (2) |
|
1.10 Analysis and Presentation |
|
|
22 | (2) |
|
1.10.1 Graph the Data in Several Ways |
|
|
22 | (1) |
|
1.10.2 Assess Assumptions of the Statistical Model |
|
|
22 | (1) |
|
1.10.3 Confirmatory and Exploratory Analysis |
|
|
23 | (1) |
|
1.10.4 Missing Data Need Careful Accounting |
|
|
23 | (1) |
|
1.10.5 Statistical Software |
|
|
24 | (1) |
|
|
24 | (2) |
|
1.11.1 Characterization Studies |
|
|
24 | (1) |
|
1.11.2 Additional Comments on Balance |
|
|
25 | (1) |
|
1.11.3 Linear and Nonlinear Models |
|
|
25 | (1) |
|
1.11.4 Analysis of Variance Versus Regression Analysis |
|
|
26 | (1) |
|
|
26 | (1) |
|
|
26 | (5) |
|
2 Completely Randomized Designs |
|
|
31 | (32) |
|
|
31 | (1) |
|
2.2 Hypotheses and Sample Size |
|
|
32 | (1) |
|
2.3 Estimation and Analysis |
|
|
32 | (2) |
|
|
34 | (2) |
|
2.5 Discussion and Extensions |
|
|
36 | (5) |
|
2.5.1 Preparing Data for Computer Analysis |
|
|
36 | (1) |
|
2.5.2 Treatment Assignment in this Example |
|
|
37 | (1) |
|
2.5.3 Check on Randomization |
|
|
37 | (1) |
|
2.5.4 Partitioning the Treatment Sum of Squares |
|
|
37 | (1) |
|
2.5.5 Alternative Endpoints |
|
|
38 | (1) |
|
|
38 | (1) |
|
|
39 | (2) |
|
|
41 | (1) |
|
2.7 Hypotheses and Sample Size |
|
|
41 | (1) |
|
2.8 Estimation and Analysis |
|
|
41 | (1) |
|
|
42 | (2) |
|
2.10 Discussion and Extensions |
|
|
44 | (3) |
|
2.10.1 Two Roles for ANCOVA |
|
|
44 | (1) |
|
2.10.2 Partitioning of Sums of Squares |
|
|
45 | (1) |
|
2.10.3 Assumption of Parallelism |
|
|
46 | (1) |
|
|
47 | (6) |
|
2.11.1 Constrained Randomization |
|
|
47 | (1) |
|
2.11.2 Assumptions of the Analysis of Variance and Covariance |
|
|
48 | (1) |
|
2.11.3 When the Assumptions Don't Hold |
|
|
49 | (1) |
|
2.11.4 Alternative Graphical Displays |
|
|
50 | (1) |
|
2.11.5 Sample Sizes for More Than Two Levels |
|
|
51 | (1) |
|
2.11.6 Limitations of Computer Output |
|
|
51 | (1) |
|
2.11.7 Unequal Sample Sizes |
|
|
51 | (1) |
|
2.11.8 Design Implications of the CRD |
|
|
51 | (1) |
|
2.11.9 Power and Alternative Hypotheses |
|
|
52 | (1) |
|
2.11.10 Regression or Analysis of Variance? |
|
|
52 | (1) |
|
|
52 | (1) |
|
|
53 | (1) |
|
|
53 | (10) |
|
3 Randomized Block Designs |
|
|
63 | (30) |
|
|
64 | (1) |
|
3.2 Hypotheses and Sample Size |
|
|
64 | (1) |
|
3.3 Estimation and Analysis |
|
|
64 | (1) |
|
|
65 | (2) |
|
3.5 Discussion and Extensions |
|
|
67 | (10) |
|
3.5.1 Evaluating Model Assumptions |
|
|
67 | (2) |
|
3.5.2 Multiple Comparisons |
|
|
69 | (2) |
|
3.5.3 Number of Treatments and Block Size |
|
|
71 | (1) |
|
|
71 | (1) |
|
3.5.5 Does It Always Pay to Block? |
|
|
71 | (1) |
|
3.5.6 Concomitant Variables |
|
|
72 | (2) |
|
|
74 | (3) |
|
|
77 | (1) |
|
3.7 Hypotheses and Sample Size |
|
|
77 | (1) |
|
3.8 Estimation and Analysis |
|
|
77 | (1) |
|
|
77 | (2) |
|
3.10 Discussion and Extensions |
|
|
79 | (1) |
|
3.10.1 Implications of the Model |
|
|
79 | (1) |
|
3.10.2 Number of Latin Squares |
|
|
79 | (1) |
|
|
80 | (1) |
|
3.12 Hypotheses and Sample Size |
|
|
81 | (1) |
|
3.13 Estimation and Analysis |
|
|
82 | (1) |
|
|
82 | (3) |
|
3.15 Discussion and Extensions |
|
|
85 | (1) |
|
3.15.1 Partially Balanced Incomplete Block Designs |
|
|
85 | (1) |
|
|
86 | (2) |
|
3.16.1 Analysis Follows Design |
|
|
86 | (1) |
|
3.16.2 Relative Efficiency |
|
|
86 | (1) |
|
3.16.3 Additivity of the Model |
|
|
87 | (1) |
|
|
88 | (1) |
|
|
88 | (5) |
|
|
93 | (24) |
|
|
95 | (1) |
|
4.2 Hypotheses and Sample Size |
|
|
95 | (1) |
|
4.3 Estimation and Analysis |
|
|
96 | (1) |
|
|
97 | (3) |
|
|
100 | (3) |
|
|
103 | (6) |
|
4.6.1 Regression Analysis Approaches |
|
|
103 | (2) |
|
|
105 | (1) |
|
4.6.3 Design Structure and Factor Structure |
|
|
105 | (1) |
|
4.6.4 Effect and Interaction Tables |
|
|
105 | (1) |
|
|
105 | (1) |
|
|
106 | (1) |
|
4.6.7 Fixed, Random, and Mixed Effects Models |
|
|
106 | (2) |
|
4.6.8 Fractional Factorials |
|
|
108 | (1) |
|
|
109 | (1) |
|
|
110 | (7) |
|
|
117 | (18) |
|
|
118 | (1) |
|
5.2 Hypotheses and Sample Size |
|
|
118 | (1) |
|
5.3 Estimation and Analysis |
|
|
119 | (2) |
|
|
121 | (6) |
|
5.5 Discussion and Extensions |
|
|
127 | (2) |
|
5.5.1 Whole-Plot and Split-Plot Variability |
|
|
127 | (1) |
|
5.5.2 Getting the Computer to Do the Right Analysis |
|
|
128 | (1) |
|
|
129 | (1) |
|
5.6.1 Fractional Factorials---Example |
|
|
129 | (1) |
|
|
129 | (1) |
|
|
130 | (1) |
|
|
130 | (5) |
|
6 Repeated Measures Designs |
|
|
135 | (14) |
|
|
136 | (1) |
|
6.2 Hypotheses and Sample Size |
|
|
136 | (1) |
|
6.3 Estimation and Analysis |
|
|
137 | (2) |
|
|
139 | (3) |
|
6.5 Discussion and Extensions |
|
|
142 | (1) |
|
|
143 | (1) |
|
|
143 | (1) |
|
6.6.2 Missing Data: The Fundamental Challenge in RMD |
|
|
143 | (1) |
|
6.6.3 Correlation Structure |
|
|
144 | (1) |
|
6.6.4 Derived Variable Analysis |
|
|
144 | (1) |
|
|
144 | (1) |
|
|
145 | (4) |
|
7 Randomized Clinical Trials |
|
|
149 | (30) |
|
|
151 | (1) |
|
|
152 | (1) |
|
7.3 Hypotheses and Sample Size |
|
|
153 | (1) |
|
|
154 | (1) |
|
7.5 Estimation and Analysis |
|
|
154 | (1) |
|
|
155 | (4) |
|
7.7 Discussion and Extensions |
|
|
159 | (4) |
|
7.7.1 Statistical Significance and Clinical Importance |
|
|
159 | (2) |
|
|
161 | (1) |
|
|
162 | (1) |
|
|
163 | (8) |
|
|
163 | (4) |
|
7.8.2 International Harmonization |
|
|
167 | (1) |
|
7.8.3 Data Safety Monitoring |
|
|
167 | (1) |
|
|
168 | (1) |
|
7.8.5 Subgroup Analysis and Data Mining |
|
|
168 | (1) |
|
|
169 | (1) |
|
7.8.7 Authorship and Recognition |
|
|
169 | (1) |
|
|
169 | (1) |
|
|
170 | (1) |
|
|
170 | (1) |
|
|
171 | (1) |
|
|
171 | (1) |
|
|
171 | (8) |
|
|
179 | (28) |
|
|
179 | (1) |
|
8.2 Genes, Gene Expression, and Microarrays |
|
|
179 | (7) |
|
8.2.1 Genes and Gene Expression |
|
|
179 | (1) |
|
8.2.2 Gene Expression Microarrays |
|
|
180 | (6) |
|
8.3 Examples of Microarray Studies |
|
|
186 | (2) |
|
8.4 Replication and Sample Size |
|
|
188 | (1) |
|
8.5 Blocking and Microarrays |
|
|
189 | (1) |
|
8.6 Randomization and Microarrays |
|
|
190 | (1) |
|
8.7 Microarray Data Analysis Issues |
|
|
191 | (9) |
|
|
191 | (2) |
|
|
193 | (3) |
|
8.7.3 Identifying Differentially Expressed Genes |
|
|
196 | (1) |
|
|
196 | (2) |
|
|
198 | (1) |
|
8.7.6 The Class Prediction Problem |
|
|
198 | (2) |
|
8.8 Data Analysis Example |
|
|
200 | (2) |
|
|
202 | (1) |
|
|
202 | (1) |
|
|
202 | (1) |
|
8.9.3 Evaluation of Data Preprocessing Methods |
|
|
203 | (1) |
|
|
203 | (1) |
|
|
203 | (4) |
Bibliography |
|
207 | (10) |
Author Index |
|
217 | (6) |
Subject Index |
|
223 | |