| Preface |
|
xvii | |
| 1 Introduction |
|
1 | (12) |
|
1.1 Example: rainfall and grassland |
|
|
1 | (1) |
|
1.2 Basic elements of an experiment |
|
|
2 | (6) |
|
1.2.1 Treatments and material |
|
|
3 | (1) |
|
1.2.2 Control and comparison |
|
|
4 | (1) |
|
1.2.3 Responses and measurement processes |
|
|
5 | (1) |
|
1.2.4 Replication, blocking, and randomization |
|
|
6 | (1) |
|
1.2.5 Validity and optimality |
|
|
7 | (1) |
|
1.3 Experiments and experiment-like studies |
|
|
8 | (1) |
|
1.4 Models and data analysis |
|
|
9 | (1) |
|
|
|
9 | (1) |
|
|
|
10 | (3) |
| 2 Linear statistical models |
|
13 | (24) |
|
|
|
13 | (1) |
|
|
|
14 | (1) |
|
2.3 The hat matrix, least-squares estimates, and design information matrix |
|
|
14 | (4) |
|
|
|
16 | (2) |
|
2.4 The partitioned linear model |
|
|
18 | (1) |
|
2.5 The reduced normal equations |
|
|
19 | (4) |
|
|
|
21 | (2) |
|
2.6 Linear and quadratic forms |
|
|
23 | (1) |
|
2.7 Estimation and information |
|
|
24 | (4) |
|
2.7.1 Pure error and lack of fit |
|
|
26 | (2) |
|
2.8 Hypothesis testing and information |
|
|
28 | (2) |
|
|
|
29 | (1) |
|
2.9 Blocking and information |
|
|
30 | (1) |
|
|
|
31 | (1) |
|
|
|
31 | (6) |
| 3 Completely randomized designs |
|
37 | (18) |
|
|
|
37 | (1) |
|
3.1.1 Example: radiation and rats |
|
|
37 | (1) |
|
|
|
38 | (3) |
|
|
|
40 | (1) |
|
|
|
41 | (3) |
|
3.4 Influence of the design on estimation |
|
|
44 | (5) |
|
|
|
45 | (3) |
|
3.4.2 Overall experiment size |
|
|
48 | (1) |
|
3.5 Influence of design on hypothesis testing |
|
|
49 | (1) |
|
|
|
50 | (1) |
|
|
|
50 | (5) |
| 4 Randomized complete blocks and related designs |
|
55 | (18) |
|
|
|
55 | (2) |
|
4.1.1 Example: structural reinforcement bars |
|
|
56 | (1) |
|
|
|
57 | (2) |
|
|
|
58 | (1) |
|
|
|
59 | (2) |
|
4.4 Influence of design on estimation |
|
|
61 | (2) |
|
|
|
63 | (1) |
|
4.5 Influence of design on hypothesis testing |
|
|
63 | (1) |
|
4.6 Orthogonality and "Condition E" |
|
|
64 | (3) |
|
|
|
67 | (1) |
|
|
|
67 | (6) |
| 5 Latin squares and related designs |
|
73 | (20) |
|
|
|
73 | (3) |
|
5.1.1 Example: web page links |
|
|
75 | (1) |
|
5.2 Replicated Latin squares |
|
|
76 | (1) |
|
|
|
77 | (3) |
|
|
|
79 | (1) |
|
|
|
80 | (3) |
|
5.5 Influence of design on quality of inference |
|
|
83 | (1) |
|
5.6 More general constructions: Graeco-Latin squares |
|
|
84 | (3) |
|
|
|
87 | (1) |
|
|
|
87 | (6) |
| 6 Some data analysis for CRDs and orthogonally blocked designs |
|
93 | (16) |
|
|
|
93 | (1) |
|
|
|
93 | (4) |
|
|
|
93 | (2) |
|
6.2.2 Modified Levene test |
|
|
95 | (1) |
|
6.2.3 General test for lack of fit |
|
|
96 | (1) |
|
6.2.4 Tukey one-degree-of-freedom test |
|
|
97 | (1) |
|
6.3 Power transformations |
|
|
97 | (3) |
|
|
|
100 | (1) |
|
|
|
100 | (5) |
|
|
|
101 | (1) |
|
|
|
102 | (1) |
|
6.5.3 Simulation-based intervals for specific problems |
|
|
102 | (1) |
|
|
|
103 | (1) |
|
|
|
104 | (1) |
|
|
|
105 | (1) |
|
|
|
106 | (3) |
| 7 Balanced incomplete block designs |
|
109 | (20) |
|
|
|
109 | (3) |
|
7.1.1 Example: drugs and blood pressure |
|
|
110 | (1) |
|
7.1.2 Existence and construction of BIBDs |
|
|
111 | (1) |
|
|
|
112 | (2) |
|
|
|
112 | (1) |
|
7.2.2 Example: dishwashing detergents |
|
|
113 | (1) |
|
|
|
114 | (5) |
|
7.3.1 Basic analysis: an example |
|
|
118 | (1) |
|
7.4 Influence of design on quality of inference |
|
|
119 | (2) |
|
7.5 More general constructions |
|
|
121 | (3) |
|
7.5.1 Extended complete block designs |
|
|
121 | (1) |
|
7.5.2 Partially balanced incomplete block designs |
|
|
122 | (2) |
|
|
|
124 | (1) |
|
|
|
124 | (5) |
| 8 Random block effects |
|
129 | (14) |
|
|
|
129 | (1) |
|
8.2 Inter- and intra-block analysis |
|
|
129 | (3) |
|
8.3 Complete block designs (CBDs) and augmented CBDs |
|
|
132 | (2) |
|
8.4 Balanced incomplete block designs (BIBDs) |
|
|
134 | (1) |
|
|
|
135 | (2) |
|
8.5.1 Example: dishwashing detergents reprise |
|
|
136 | (1) |
|
8.6 Why can information be "recovered"? |
|
|
137 | (1) |
|
|
|
138 | (1) |
|
|
|
139 | (1) |
|
|
|
139 | (4) |
| 9 Factorial treatment structure |
|
143 | (24) |
|
|
|
143 | (1) |
|
9.1.1 Example: strength of concrete |
|
|
144 | (1) |
|
9.2 An overparameterized model |
|
|
144 | (8) |
|
|
|
147 | (1) |
|
9.2.2 Matrix development for the overparameterized model |
|
|
148 | (4) |
|
9.3 An equivalent full-rank model |
|
|
152 | (3) |
|
9.3.1 Matrix development for the full-rank model |
|
|
154 | (1) |
|
|
|
155 | (2) |
|
9.5 Partitioning of variability and hypothesis testing |
|
|
157 | (2) |
|
9.6 Factorial experiments as CRDs, CBDs, LSDs, and BIBDs |
|
|
159 | (1) |
|
|
|
160 | (2) |
|
|
|
162 | (1) |
|
|
|
163 | (4) |
| 10 Split-plot designs |
|
167 | (20) |
|
|
|
167 | (2) |
|
10.1.1 Example: strength of fabrics |
|
|
168 | (1) |
|
10.1.2 Example: English tutoring |
|
|
169 | (1) |
|
|
|
169 | (6) |
|
|
|
170 | (1) |
|
|
|
171 | (4) |
|
|
|
175 | (3) |
|
|
|
176 | (1) |
|
|
|
177 | (1) |
|
10.4 More than two experimental factors |
|
|
178 | (1) |
|
10.5 More than two strata of experimental units |
|
|
178 | (2) |
|
|
|
180 | (2) |
|
|
|
182 | (5) |
| 11 Two-level factorial experiments: basics |
|
187 | (20) |
|
|
|
187 | (1) |
|
11.2 Example: bacteria and nuclease |
|
|
187 | (1) |
|
11.3 Two-level factorial structure |
|
|
188 | (5) |
|
11.4 Estimation of treatment contrasts |
|
|
193 | (3) |
|
|
|
193 | (1) |
|
|
|
193 | (2) |
|
|
|
195 | (1) |
|
11.5 Testing factorial effects |
|
|
196 | (4) |
|
11.5.1 Individual model terms, experiments with replication |
|
|
196 | (1) |
|
11.5.2 Multiple model terms, experiments with replication |
|
|
197 | (1) |
|
11.5.3 Experiments without replication |
|
|
197 | (3) |
|
11.6 Additional guidelines for model editing |
|
|
200 | (1) |
|
|
|
201 | (1) |
|
|
|
201 | (6) |
| 12 Two-level factorial experiments: blocking |
|
207 | (20) |
|
|
|
207 | (1) |
|
|
|
207 | (1) |
|
|
|
208 | (1) |
|
|
|
208 | (2) |
|
12.2.1 Example: gophers and burrow plugs |
|
|
210 | (1) |
|
12.3 Balanced incomplete block designs (BIBDs) |
|
|
210 | (1) |
|
12.4 Regular blocks of size 2f-1 |
|
|
211 | (5) |
|
|
|
214 | (1) |
|
12.4.2 Partial confounding |
|
|
215 | (1) |
|
12.5 Regular blocks of size 2f-2 |
|
|
216 | (3) |
|
12.6 Regular blocks: general case |
|
|
219 | (3) |
|
|
|
222 | (1) |
|
|
|
223 | (4) |
| 13 Two-level factorial experiments: fractional factorials |
|
227 | (20) |
|
|
|
227 | (1) |
|
13.2 Regular fractional factorial designs |
|
|
227 | (3) |
|
|
|
230 | (1) |
|
13.4 Example: bacteria and bacteriocin |
|
|
231 | (1) |
|
13.5 Comparison of fractions |
|
|
231 | (3) |
|
|
|
231 | (2) |
|
13.5.2 Comparing fractions of equal resolution: aberration |
|
|
233 | (1) |
|
13.6 Blocking regular fractional factorial designs |
|
|
234 | (1) |
|
13.7 Augmenting regular fractional factorial designs |
|
|
235 | (5) |
|
13.7.1 Combining fractions |
|
|
235 | (2) |
|
|
|
237 | (2) |
|
13.7.3 Blocking combined fractions |
|
|
239 | (1) |
|
13.8 Irregular fractional factorial designs |
|
|
240 | (2) |
|
|
|
242 | (1) |
|
|
|
243 | (4) |
| 14 Factorial group screening experiments |
|
247 | (14) |
|
|
|
247 | (1) |
|
14.2 Example: semiconductors and simulation |
|
|
248 | (2) |
|
14.3 Factorial structure of group screening designs |
|
|
250 | (3) |
|
14.4 Group screening design considerations |
|
|
253 | (3) |
|
|
|
253 | (1) |
|
|
|
253 | (1) |
|
|
|
254 | (1) |
|
14.4.4 Screening efficiency |
|
|
255 | (1) |
|
|
|
256 | (1) |
|
|
|
257 | (1) |
|
|
|
258 | (3) |
| 15 Regression experiments: first-order polynomial models |
|
261 | (20) |
|
|
|
261 | (2) |
|
15.1.1 Example: bacteria and elastase |
|
|
262 | (1) |
|
|
|
263 | (1) |
|
15.3 Designs for first-order models |
|
|
264 | (2) |
|
|
|
264 | (1) |
|
|
|
265 | (1) |
|
15.4 Blocking experiments for first-order models |
|
|
266 | (3) |
|
15.5 Split-plot regression experiments |
|
|
269 | (2) |
|
15.5.1 Example: bacteria and elastase reprise |
|
|
269 | (2) |
|
|
|
271 | (1) |
|
15.6.1 Use of a center point |
|
|
271 | (5) |
|
15.6.2 General test for lack-of-fit |
|
|
272 | (4) |
|
|
|
276 | (1) |
|
|
|
276 | (5) |
| 16 Regression experiments: second-order polynomial models |
|
281 | (18) |
|
|
|
281 | (1) |
|
16.1.1 Example: nasal sprays |
|
|
281 | (1) |
|
16.2 Quadratic polynomial models |
|
|
282 | (2) |
|
16.3 Designs for second-order models |
|
|
284 | (5) |
|
16.3.1 Complete three-level factorial designs |
|
|
284 | (2) |
|
16.3.2 Central composite designs |
|
|
286 | (1) |
|
16.3.3 Box-Behnken designs |
|
|
287 | (1) |
|
16.3.4 Augmented pairs designs |
|
|
288 | (1) |
|
16.4 Design scaling and information |
|
|
289 | (2) |
|
|
|
291 | (1) |
|
|
|
292 | (1) |
|
|
|
292 | (1) |
|
16.7 Bias due to omitted model terms |
|
|
293 | (3) |
|
|
|
296 | (1) |
|
|
|
296 | (3) |
| 17 Introduction to optimal design |
|
299 | (14) |
|
|
|
299 | (1) |
|
17.2 Optimal design fundamentals |
|
|
299 | (2) |
|
|
|
301 | (8) |
|
|
|
301 | (2) |
|
|
|
303 | (1) |
|
|
|
304 | (1) |
|
|
|
304 | (5) |
|
|
|
309 | (1) |
|
|
|
310 | (1) |
|
|
|
311 | (2) |
| Appendix A: Calculations using R |
|
313 | (8) |
| Appendix B: Solution notes for selected exercises |
|
321 | (20) |
| References |
|
341 | (6) |
| Index |
|
347 | |