Atnaujinkite slapukų nuostatas

El. knyga: Design of Microwave Active Devices

  • Formatas: EPUB+DRM
  • Išleidimo metai: 16-Apr-2014
  • Leidėjas: ISTE Ltd and John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781118814864
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Išleidimo metai: 16-Apr-2014
  • Leidėjas: ISTE Ltd and John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781118814864
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book presents methods for the design of the main microwave active devices.

The first chapter focuses on amplifiers working in the linear mode. The authors present the problems surrounding narrowband and wideband impedance matching, stability, polarization and the noise factor, as well as specific topologies such as the distributed amplifier and the differential amplifier.

Chapter 2 concerns the power amplifier operation. Specific aspects on efficiency, impedance matching and class of operation are presented, as well as the main methods of linearization and efficiency improvement.

Frequency transposition is the subject of Chapter 3. The author presents the operating principle as well as the different topologies using transistors and diodes.

Chapter 4 is dedicated to the operation of fixed frequency and tunable oscillators such as the voltage controlled oscillator (VCO) and the yttrium iron garnet (YIG).

The final chapter presents the main control functions, i.e. attenuators, phase shifters and switches.
Chapter 1 Amplification in Linear Mode
1(92)
Jean-Luc Gautier
Sebastien Quintanel
1.1 Principles of microwave amplification
1(12)
1.1.1 Characteristics of an amplifier in linear mode
2(3)
1.1.2 Review on active two-port networks in linear mode
5(5)
1.1.3 Basic structure of an amplifier
10(1)
1.1.4 Reciprocal and lossless impedance matching networks
11(1)
1.1.5 Design methodology
12(1)
1.2 Narrowband amplifiers with maximum gain
13(16)
1.2.1 Transistor test
13(2)
1.2.2 Stabilization circuits
15(3)
1.2.3 Polarization circuits
18(3)
1.2.4 Polarization circuits and stability
21(2)
1.2.5 Impedance matching circuits
23(4)
1.2.6 The multistage amplifier: inter-stage matching
27(1)
1.2.7 Design example
28(1)
1.3 Low-noise narrowband amplifier
29(10)
1.3.1 Review of the noise characteristics of a transistor
29(2)
1.3.2 Minimum noise factor amplifier
31(2)
1.3.3 Noise factor--gain matching compromise
33(2)
1.3.4 Multistage amplifier and noise factor
35(1)
1.3.5 Balanced low-noise amplifier
36(3)
1.4 Specific configurations for transistors
39(9)
1.4.1 Common-grid and common-drain configurations
40(3)
1.4.2 Cascade and cascode configurations
43(5)
1.5 Wideband amplification
48(34)
1.5.1 Reactive wideband matching
49(9)
1.5.2 Selective mismatching
58(2)
1.5.3 Resistive matching
60(7)
1.5.4 Feedback amplifier
67(7)
1.5.5 Active matching amplifier
74(2)
1.5.6 Distributed amplifier
76(6)
1.6 Differential amplifier
82(7)
1.6.1 Four-port network with a plane of symmetry
83(1)
1.6.2 Differential amplifier
84(5)
1.7 Bibliography
89(4)
Chapter 2 Power Amplification
93(66)
Jean-Luc Gautier
Myriam Ariaudo
Cedric Duperrier
2.1 Characteristics of power amplifiers
93(14)
2.1.1 Gain, output power and efficiency
94(1)
2.1.2 Gain compression
95(3)
2.1.3 AM/AM and AM/PM conversion
98(1)
2.1.4 Third-order intermodulation
98(5)
2.1.5 Adjacent channel power ratio (ACPR) and noise power ratio (NPR)
103(4)
2.2 Analysis of the operation of a power amplifier
107(16)
2.2.1 Principle of operation
107(2)
2.2.2 Dynamic load line
109(2)
2.2.3 Conditions for optimum power
111(3)
2.2.4 Small-signal and large-signal matching
114(2)
2.2.5 Determination of optimal load conditions
116(7)
2.3 Classes of operation
123(17)
2.3.1 Sinusoidal classes
123(11)
2.3.2 High-efficiency classes F and F inverse
134(3)
2.3.3 D and E commutation classes
137(3)
2.4 Architectures of power amplifiers
140(4)
2.4.1 Cascade structure
140(1)
2.4.2 Combination of power
141(1)
2.4.3 Tree structure
142(2)
2.5 Design example of an amplifier in class B
144(4)
2.6 Linearization and efficiency improvement
148(8)
2.6.1 Power amplification and non-constant envelope signals
148(2)
2.6.2 Linearization and efficiency improvement techniques
150(6)
2.7 Bibliography
156(3)
Chapter 3 Frequency Transposition
159(58)
Jean-Luc Gautier
3.1 Operating principles
159(9)
3.1.1 Up-converter and down-converter mixers
160(3)
3.1.2 Using a nonlinear element
163(1)
3.1.3 Parametric operation and pump signal
164(2)
3.1.4 Conversion matrix
166(2)
3.2 Mixer characteristics
168(12)
3.2.1 Conversion gain
168(1)
3.2.2 Gain compression and intermodulation
169(5)
3.2.3 Port isolation
174(1)
3.2.4 Noise factors
175(5)
3.3 Simple mixer operation
180(3)
3.3.1 Parasitic frequencies
180(2)
3.3.2 Filtering issues
182(1)
3.4 Balanced mixer topologies
183(10)
3.4.1 Single-balanced mixers
183(4)
3.4.2 Double-balanced mixer
187(2)
3.4.3 Image frequency rejection mixers
189(3)
3.4.4 SSB mixer
192(1)
3.5 Topology of passive and active mixers
193(19)
3.5.1 Passive mixers
194(12)
3.5.2 Active mixers
206(6)
3.6 Frequency multipliers
212(1)
3.7 Bibliography
213(4)
Chapter 4 Oscillators
217(76)
Jean-Luc Gautier
4.1 Operating principles
217(8)
4.1.1 Two-port network feedback-type oscillators
218(4)
4.1.2 Negative-resistance one-port network-type oscillators
222(3)
4.2 Analysis of one-port circuit-type oscillators
225(29)
4.2.1 Van Der Pol oscillator
225(8)
4.2.2 Quasi-static analysis of a one-port circuit-type oscillator
233(6)
4.2.3 Oscillation stability
239(4)
4.2.4 Oscillator synchronization
243(5)
4.2.5 Noise oscillator analysis
248(6)
4.3 Oscillator characteristics
254(6)
4.3.1 Output power and efficiency
255(1)
4.3.2 Oscillation frequency and tuning
256(1)
4.3.3 External quality factor
256(1)
4.3.4 Spectral purity and harmonic distortion
256(1)
4.3.5 Pulling and pushing factors
257(1)
4.3.6 Frequency stability
257(1)
4.3.7 Amplitude and phase-modulation noise
258(2)
4.4 Impedance with a negative resistive component
260(10)
4.4.1 Analytical determination
261(2)
4.4.2 Graphical determination: mapping
263(3)
4.4.3 Worked example of negative real part impedance determination
266(4)
4.5 Fixed-frequency oscillators
270(9)
4.5.1 Oscillator with localized or distributed-parameter circuit
271(1)
4.5.2 Dielectric-resonator oscillator
271(8)
4.6 Electronically tunable oscillators
279(11)
4.6.1 Limitations of the negative real part component
279(2)
4.6.2 Varactor-diode-tuned oscillators (VCO)
281(5)
4.6.3 YIG-resonator tuned oscillators
286(4)
4.7 Bibliography
290(3)
Chapter 5 Control Functions
293(22)
Jean-Luc Gautier
5.1 Semiconductor components for control functions
293(3)
5.1.1 Varactor diode
293(1)
5.1.2 PIN diode
294(1)
5.1.3 Cold transistor
295(1)
5.2 Variable attenuators
296(5)
5.2.1 Basic cell
297(1)
5.2.2 Matched attenuation cells
298(3)
5.3 Variable phase shifters
301(5)
5.3.1 Reflection phase shifters
301(1)
5.3.2 Transmission phase shifters
302(3)
5.3.3 Combination vector phase shifters
305(1)
5.4 Switches
306(7)
5.4.1 Single-pole single-throw (SPST) switch
306(6)
5.4.2 Single-pole multiple-throw (SPnT) switch
312(1)
5.5 Bibliography
313(2)
Appendix 1 Lossless Two-Port Network: Mismatching 315(2)
Appendix 2 Noise in a Balanced Amplifier 317(6)
Appendix 3 Specific Topologies with Transistors 323(8)
Appendix 4 Wideband Impedance Matching: Reactive Two-Port Networks 331(10)
Appendix 5 Wideband Impedance Matching: Dissipative Two-Port Networks 341(8)
Appendix 6 Wideband Amplification: Parallel Resistive Feedback 349(4)
Appendix 7 Graphical Method 353(6)
Appendix 8 Distributed Amplifier 359(10)
Appendix 9 Differential Amplifier 369(4)
Appendix 10 Third-order Intermodulation 373(4)
List of Authors 377(2)
Index 379
Jean-Luc GAUTIER is Emeritus Professor at ENSEA in France. He has carried out research into the design microwave circuits throughout his career. It has led to more than 100 publications or communications in journals or at international conferences.