Atnaujinkite slapukų nuostatas

El. knyga: Designing Intelligent Healthcare Systems, Products, and Services Using Disruptive Technologies and Health Informatics

Edited by (Amity University, Noida), Edited by (, Jamia Millia Islamia University), Edited by (CHRIST (Deemed to be University)), Edited by (IEC, Ghaziabad), Edited by (Atos Consulting)

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Disruptive technologies are gaining importance in healthcare systems and health informatics. By discussing Computational Intelligence, IoT, Blockchain, Cloud, and Big Data Analytics, this book provides support to researchers and other stakeholders involved in designing intelligent systems used for healthcare systems, products, and services.

Disruptive technologies are gaining importance in healthcare systems and health informatics. By discussing computational intelligence, IoT, blockchain, cloud and big data analytics, this book provides support to researchers and other stakeholders involved in designing intelligent systems used in healthcare, its products, and its services.

This book offers both theoretical and practical application-based chapters and presents novel technical studies on designing intelligent healthcare systems, products, and services. It offers conceptual and visionary content comprising hypothetical and speculative scenarios and will also include recently developed disruptive holistic techniques in healthcare and the monitoring of physiological data. Metaheuristic computational intelligence-based algorithms for analysis, diagnosis, and prevention of disease through disruptive technologies are also provided.

Designing Intelligent Healthcare Systems, Products, and Services Using Disruptive Technologies and Health Informatics

is written for researchers, academicians, and professionals to bring them up to speed on current research endeavours, as well as to introduce hypothetical and speculative scenarios.

1. Telemedicine (e-Health, m-Health): Requirements, Challenges and
Applications.

2. Future Risk Analysis of the Health Public Sector During COVID-19 Period
(2020 to March 2021).

3. Role of Advanced Technologies in Gait Analysis and Its Importance in
Healthcare.

4. Emerging Disruptive Technologies and Their Impact on Health Informatics.

5. Scaling Up Telemedicine in India: Moving Towards Intelligent Healthcare
via Disruptions.

6. A Wearable ECG Sensor for Intelligent Cardiovascular Health Informatics.

7. Recent Trends in Wearable Technologies, Challenges and Opportunities.

8. Intelligent Depression Detection System Using Effective Hyper-Scanning
Techniques.

9. Design of an Intelligent System for Diabetes Prediction by Integrating
Rough Set Theory and Genetic Algorithm.

10. Blockchain for the Healthcare Sector: Application and Challenges.

11. Blockchain-Enabled Secured Medical Supply Chain Management.

12. Big Data in Healthcare: Technological Implications and Challenges.

13. An Efficient System for Predictive Analysis on Brain Cancer Using Machine
Learning and Deep Learning Techniques.

14. A Review Study on Different Machine Learning Algorithms Used for COVID
Outbreak Prediction.

15. Designing a Rough-PSO-Based COVID-19 Prediction Model.

16. Transitions in Machine Learning Approaches for Healthcare-Sector
Applications.
Teena Bagga, Amirul Hasan Ansari