| Foreword |
|
xi | |
| Preface |
|
xix | |
|
|
|
xxi | |
|
|
|
xxv | |
|
|
|
1 | (4) |
|
|
|
1 | (1) |
|
|
|
2 | (2) |
|
|
|
4 | (1) |
|
Chapter 2 Background and Literature Survey |
|
|
5 | (16) |
|
|
|
5 | (2) |
|
2.1.1 Regime Change Detection Methods |
|
|
6 | (1) |
|
|
|
7 | (6) |
|
2.2.1 The Concept of Directional Change |
|
|
9 | (2) |
|
2.2.2 Research Using Directional Change |
|
|
11 | (1) |
|
2.2.3 Directional Change Indicators |
|
|
12 | (1) |
|
2.2.3.1 Total Price Movement |
|
|
12 | (1) |
|
2.2.3.2 Time for Completion of a Trend |
|
|
12 | (1) |
|
2.2.3.3 Time---Adjusted Return of DC |
|
|
13 | (1) |
|
2.3 Machine Learning Techniques |
|
|
13 | (8) |
|
2.3.1 Hidden Markov Model |
|
|
13 | (2) |
|
2.3.1.1 Definition of HMM |
|
|
15 | (1) |
|
2.3.1.2 Parameters of HMM |
|
|
15 | (1) |
|
2.3.1.3 Expectation-Maximization Algorithm |
|
|
16 | (1) |
|
2.3.2 Naive Bayes Classifier |
|
|
17 | (1) |
|
2.3.2.1 Definition of Naive Bayes Classifier |
|
|
18 | (3) |
|
Chapter 3 Regime Change Detection Using Directional Change Indicators |
|
|
21 | (18) |
|
|
|
22 | (3) |
|
|
|
25 | (3) |
|
|
|
26 | (1) |
|
3.2.2 Time Series Indicator |
|
|
27 | (1) |
|
|
|
28 | (1) |
|
|
|
28 | (1) |
|
3.3.2 Hidden Markov Model |
|
|
28 | (1) |
|
|
|
28 | (9) |
|
|
|
29 | (2) |
|
|
|
31 | (2) |
|
|
|
33 | (2) |
|
3.4.4 Distribution of the Indicator R |
|
|
35 | (1) |
|
|
|
35 | (2) |
|
|
|
37 | (2) |
|
Chapter 4 Classification of Normal and Abnormal Regimes in Financial Markets |
|
|
39 | (20) |
|
|
|
40 | (1) |
|
|
|
41 | (4) |
|
4.2.1 Summarising Financial Data in DC |
|
|
41 | (2) |
|
4.2.2 Detecting Regime Changes through HMM |
|
|
43 | (1) |
|
4.2.3 Comparing Market Regimes in an Indicator Space |
|
|
44 | (1) |
|
|
|
45 | (5) |
|
|
|
46 | (1) |
|
4.3.2 Summarising Data under DC |
|
|
47 | (1) |
|
4.3.3 Detecting Regime Changes under HMM |
|
|
47 | (1) |
|
4.3.4 Observing Market Regimes in the Normalised Indicator Space |
|
|
48 | (2) |
|
4.4 Results and Discussions |
|
|
50 | (6) |
|
4.4.1 Market Regimes in the Indicator Space |
|
|
51 | (1) |
|
4.4.2 Market Regimes under Different Thresholds |
|
|
52 | (2) |
|
|
|
54 | (2) |
|
|
|
56 | (3) |
|
Chapter 5 Tracking Regime Changes Using Directional Change Indicators |
|
|
59 | (20) |
|
|
|
60 | (1) |
|
|
|
61 | (4) |
|
|
|
61 | (1) |
|
5.2.2 Use of a Naive Bayes Classifier |
|
|
62 | (3) |
|
|
|
65 | (1) |
|
|
|
65 | (1) |
|
5.3.2 Regime Changes on the Data |
|
|
66 | (1) |
|
|
|
66 | (10) |
|
5.4.1 Calculating Probability |
|
|
68 | (1) |
|
5.4.2 B-Simple for Regime Classification |
|
|
69 | (1) |
|
5.4.3 B-Strict for Regime Classification |
|
|
70 | (1) |
|
5.4.4 Tracked Regime Changes |
|
|
71 | (1) |
|
5.4.4.1 Tracked Regime Changes on DJIA Index |
|
|
71 | (2) |
|
5.4.4.2 Tracked Regime Changes on FTSE 100 Index |
|
|
73 | (1) |
|
5.4.4.3 Tracked Regime Changes on S&P 500 |
|
|
74 | (1) |
|
|
|
74 | (2) |
|
|
|
76 | (3) |
|
Chapter 6 Algorithmic Trading Based on Regime Change Tracking |
|
|
79 | (14) |
|
|
|
79 | (1) |
|
|
|
80 | (4) |
|
6.2.1 Regime Tracking Information |
|
|
80 | (1) |
|
6.2.2 Trading Algorithm JC1 |
|
|
81 | (2) |
|
6.2.3 Trading Algorithm JC2 |
|
|
83 | (1) |
|
6.2.4 Control Algorithm CT1 |
|
|
83 | (1) |
|
|
|
84 | (2) |
|
|
|
84 | (1) |
|
6.3.2 Experimental Parameters |
|
|
84 | (1) |
|
|
|
85 | (1) |
|
|
|
86 | (3) |
|
|
|
86 | (1) |
|
|
|
87 | (1) |
|
|
|
88 | (1) |
|
|
|
89 | (1) |
|
6.5.1 The Primary Goals Are Achieved |
|
|
89 | (1) |
|
6.5.2 Future Work: Regime Tracking for Better Trading Algorithms |
|
|
90 | (1) |
|
|
|
90 | (3) |
|
|
|
93 | (8) |
|
|
|
93 | (4) |
|
|
|
97 | (1) |
|
|
|
98 | (3) |
|
7.3.1 Research Directions |
|
|
99 | (2) |
|
|
|
101 | (22) |
|
Appendix A A Formal Definition of Directional Change |
|
|
101 | (6) |
|
Appendix B Extended Results of Chapter 3 |
|
|
107 | (4) |
|
Appendix C Experiment Summary of Chapter 4 |
|
|
111 | (8) |
|
Appendix D Detected Regime Changes in Chapter 4 |
|
|
119 | (4) |
| Bibliography |
|
123 | (6) |
| Index |
|
129 | |