Atnaujinkite slapukų nuostatas

El. knyga: Development of a Sub-glacial Radio Telescope for the Detection of GZK Neutrinos

  • Formatas: PDF+DRM
  • Serija: Springer Theses
  • Išleidimo metai: 29-May-2015
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319187563
  • Formatas: PDF+DRM
  • Serija: Springer Theses
  • Išleidimo metai: 29-May-2015
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319187563

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The goal of the project presented in this book is to detect neutrinos created by resonant interactions of ultrahigh energy cosmic rays on the CMB photon field filling the Universe. In this pioneering first analysis, the author puts forward much of the analysis framework, including calibrations of the electronic hardware and antenna geometry, as well as the development of algorithms for event reconstruction and data reduction. While only two of the 37 stations planned for the Askaryan Radio Array were used in this assessment of 10 months of data, the analysis was able to exclude neutrino fluxes above 10 PeV with a limit not far from the best current limit set by the IceCube detector, a result which establishes the radio detection technique as the path forward to achieving the massive volumes needed to detect these ultrahigh energy neutrinos.
1 Introduction
1(12)
1.1 Ultra-high Energy Astroparticle Physics
1(2)
1.2 The Neutrino -- A Perfect Cosmic Messenger?
3(2)
1.3 Thesis Overview
5(8)
1.3.1 Theory
5(1)
1.3.2 Detector Hardware and Calibration Efforts
6(1)
1.3.3 Data Analysis
7(1)
References
8(5)
Part I Theory
2 The GZK Neutrino Flux
13(12)
2.1 Neutrino Production in the GZK Mechanism
14(3)
2.2 Dependencies and Implications
17(8)
2.2.1 The Composition of Ultra-high Energy Cosmic Rays
18(1)
2.2.2 The Cosmic Ray Emission Spectrum
19(1)
2.2.3 The Evolution of Cosmic Ray Sources
20(1)
2.2.4 Neutrino Flux Expectations Under Varying Assumptions
21(2)
References
23(2)
3 The Askaryan Effect in Dense Media
25(12)
3.1 Emission of Radio Waves from Neutrino-Induced Cascades
25(7)
3.1.1 Negative Charge Excess in Electromagnetic Cascades
25(2)
3.1.2 Coherent Emission of Radio Waves from a Charge Excess in Electromagnetic Cascades
27(3)
3.1.3 The Influence of the LPM Effect
30(1)
3.1.4 Askaryan Emission in the Time Domain
31(1)
3.1.5 Simulation Codes
31(1)
3.2 Verifications of the Askaryan Effect
32(5)
References
33(4)
Part II Detector Hardware and Calibration Efforts
4 The Askaryan Radio Array (ARA)
37(22)
4.1 The General Detector Setup
37(11)
4.1.1 ARA Antennas
41(3)
4.1.2 Signal Chain
44(4)
4.2 Status and Performance of the Currently Installed ARA Stations
48(1)
4.3 The ARA Detector in Comparison to Other Neutrino Detectors
49(10)
References
56(3)
5 The Calibration of the Ice Ray Sampler (IRS2) Chip
59(22)
5.1 The IRS2 Chip
59(4)
5.1.1 Sample Timing
60(2)
5.1.2 Sample Storage and Digitization
62(1)
5.2 The Calibration
63(18)
5.2.1 The Data Set
63(1)
5.2.2 Timing Calibration
64(5)
5.2.3 Voltage Calibration
69(4)
5.2.4 The Frequency Response of the IRS2 Chip
73(1)
5.2.5 The Temperature Dependence of the Sample Timing
74(2)
5.2.6 Calibration Checks
76(3)
References
79(2)
6 The Calibration of the ARA Station Geometry
81(14)
6.1 ARA Coordinates
81(1)
6.2 Uncertainties on the ARA Station Geometry and Cable Delays
82(1)
6.3 The Fit of the Geometry Parameters
83(12)
6.3.1 The General Approach
83(2)
6.3.2 Initial Assumptions
85(1)
6.3.3 Results and Cross Checks
86(5)
6.3.4 Errors on the Geometrical Calibration
91(1)
Reference
92(3)
Part III Data Analysis
7 Simulations
95(6)
7.1 The ARA Simulation
95(3)
7.2 Effective Volume, Effective Area and Neutrino Limits
98(3)
References
100(1)
8 Algorithms for the ARA Data Analysis
101(24)
8.1 The Signal to Noise Ratio
101(1)
8.2 Thermal Noise Rejection
102(1)
8.3 The Time Sequence Algorithm
102(8)
8.3.1 Efficiency Comparison of Simulation and Data
107(2)
8.3.2 Filter and Trigger Studies
109(1)
8.4 The Vertex Reconstruction Algorithm
110(15)
8.4.1 Timing Determination
111(2)
8.4.2 Matrix Based Vertex Reconstruction
113(3)
8.4.3 Channel Pair Selection
116(1)
8.4.4 Reconstruction Quality Parameters
117(2)
8.4.5 Performance on Simulation and Recorded Data
119(5)
References
124(1)
9 Signal Discrimination in the ARA02-ARA03 Data
125(14)
9.1 String Spark Rejection
126(2)
9.2 Cut Adjustments for Background Rejection
128(4)
9.3 The Background Estimation
132(7)
10 Data Analysis Results
139(10)
10.1 Signal Estimation and Neutrino Flux Limits
139(3)
10.2 Systematic Errors
142(2)
10.3 Coincident Event Analysis
144(5)
References
148(1)
11 Summary and Outlook
149(6)
11.1 Summary and Discussion
149(3)
11.2 Outlook
152(3)
References
153(2)
Appendix A Noise Modeling for AraSim 155(2)
Appendix B Details on the Systematic Error Estimation 157
Thomas Meures earned his Diploma in physics at the RWTH-Aachen University in 2010 with a thesis about the reciprocity calibration of acoustic hydrophones in water and ice, written under the supervision of Prof. Dr. Christopher Wiebusch. For his PhD studies he moved from acoustic research to radio neutrino detection at the Université libre de Bruxelles with Prof. Dr. Kael Hanson. Currently he is working on new developments of electronics for astroparticle physics experiments at the University of Wisconsin.