Atnaujinkite slapukų nuostatas

El. knyga: Diffeomorphisms of Elliptic 3-Manifolds

  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Mathematics 2055
  • Išleidimo metai: 29-Aug-2012
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783642315640
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Mathematics 2055
  • Išleidimo metai: 29-Aug-2012
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783642315640
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This work concerns the diffeomorphism groups of 3-manifolds, in particular of elliptic 3-manifolds. These are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, now known to be exactly the closed 3-manifolds that have a finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to its diffeomorphism group is a homotopy equivalence. The original Smale Conjecture, for the 3-sphere, was proven by J. Cerf and A. Hatcher, and N. Ivanov proved the generalized conjecture for many of the elliptic 3-manifolds that contain a geometrically incompressible Klein bottle.

The main results establish the Smale Conjecture for all elliptic 3-manifolds containing geometrically incompressible Klein bottles, and for all lens spaces L(m,q) with m at least 3. Additional results imply that for a Haken Seifert-fibered 3 manifold V, the space of Seifert fiberings has contractible components, and apart from a small list of known exceptions, is contractible. Considerable foundational and background
1 Elliptic Three-Manifolds and the Smale Conjecture
1(8)
1.1 Elliptic Three-Manifolds and Their Isometries
1(2)
1.2 The Smale Conjecture
3(2)
1.3 The Weak Smale Conjecture
5(2)
1.4 Perelman's Methods
7(2)
2 Diffeomorphisms and Embeddings of Manifolds
9(10)
2.1 Frechet Spaces and the C∞-Topology
9(1)
2.2 Metrics Which are Products Near the Boundary
10(2)
2.3 Manifolds with Boundary
12(2)
2.4 Spaces of Embeddings
14(1)
2.5 Bundles and Fiber-Preserving Diffeomorphisms
14(2)
2.6 Aligned Vector Fields and the Aligned Exponential
16(3)
3 The Method of Cerf and Palais
19(34)
3.1 The Palais-Cerf Restriction Theorem
21(4)
3.2 The Space of Images
25(1)
3.3 Projection of Fiber-Preserving Diffeomorphisms
26(3)
3.4 Restriction of Fiber-Preserving Diffeomorphisms
29(2)
3.5 Restriction Theorems for Orbifolds
31(5)
3.6 Singular Fiberings
36(5)
3.7 Spaces of Fibered Structures
41(3)
3.8 Restricting to the Boundary or the Basepoint
44(2)
3.9 The Space of Seifert Fiberings of a Haken Three-Manifold
46(5)
3.10 The Parameterized Extension Principle
51(2)
4 Elliptic Three-Manifolds Containing One-Sided Klein Bottles
53(32)
4.1 The Manifolds M(m, n)
53(1)
4.2 Outline of the Proof
54(3)
4.3 Isometries of Elliptic Three-Manifolds
57(2)
4.4 The Hopf Fibering of M(m, n) and Special Klein Bottles
59(7)
4.5 Homotopy Type of the Space of Diffeomorphisms
66(2)
4.6 Generic Position Configurations
68(6)
4.7 Generic Position Families
74(2)
4.8 Parameterization
76(9)
5 Lens Spaces
85(60)
5.1 Outline of the Proof
85(2)
5.2 Reductions
87(1)
5.3 Annuli in Solid Tori
88(2)
5.4 Heegaard Tori in Very Good Position
90(3)
5.5 Sweepouts, and Levels in Very Good Position
93(3)
5.6 The Rubinstein-Scharlemann Graphic
96(4)
5.7 Graphics Having No Unlabeled Region
100(5)
5.8 Graphics for Parameterized Families
105(14)
5.8.1 Weak Transversality
106(3)
5.8.2 Finite Singularity Type
109(1)
5.8.3 Semialgebraic Sets
110(1)
5.8.4 The Codimension of a Real-Valued Function
111(2)
5.8.5 The Stratification of C∞ (M, R) by Codimension
113(3)
5.8.6 Border Label Control
116(1)
5.8.7 Building the Graphics
117(2)
5.9 Finding Good Regions
119(7)
5.10 From Good to Very Good
126(5)
5.11 Setting up the Last Step
131(2)
5.12 Deforming to Fiber-Preserving Families
133(9)
5.13 Parameters in Dd
142(3)
References 145(4)
Index 149