Atnaujinkite slapukų nuostatas

El. knyga: Differential Forms

(Massachusetts Inst Of Tech, Usa), (Massachusetts Inst Of Tech, Usa)
  • Formatas: 272 pages
  • Išleidimo metai: 20-Mar-2019
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • Kalba: eng
  • ISBN-13: 9789813272798
Kitos knygos pagal šią temą:
  • Formatas: 272 pages
  • Išleidimo metai: 20-Mar-2019
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • Kalba: eng
  • ISBN-13: 9789813272798
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

'Guillemin and Haineās goal is to construct a well-documented road map that extends undergraduate understanding of multivariable calculus into the theory of differential forms. Throughout, the authors emphasize connections between differential forms and topology while making connections to single and multivariable calculus via the change of variables formula, vector space duals, physics; classical mechanisms, div, curl, grad, Brouwerās fixed-point theorem, divergence theorem, and Stokesās theorem The exercises support, apply and justify the developing road map.'CHOICEThere already exist a number of excellent graduate textbooks on the theory of differential forms as well as a handful of very good undergraduate textbooks on multivariable calculus in which this subject is briefly touched upon but not elaborated on enough.The goal of this textbook is to be readable and usable for undergraduates. It is entirely devoted to the subject of differential forms and explores a lot of its important ramifications.In particular, our book provides a detailed and lucid account of a fundamental result in the theory of differential forms which is, as a rule, not touched upon in undergraduate texts: the isomorphism between the ech cohomology groups of a differential manifold and its de Rham cohomology groups.
Preface v
Introduction v
Organization vii
Notational Conventions xi
Acknowledgments xii
About the Authors xiii
Chapter 1 Multilinear Algebra
1(36)
1.1 Background
1(3)
1.2 Quotient and dual spaces
4(5)
1.3 Tensors
9(4)
1.4 Alternating k-tensors
13(6)
1.5 The space Λ(V*)
19(4)
1.6 The wedge product
23(3)
1.7 The interior product
26(3)
1.8 The pullback operation on Λk (V*)
29(4)
1.9 Orientations
33(4)
Chapter 2 The Concept of a Differential Form
37(44)
2.1 Vector fields and 1-forms
37(5)
2.2 Integral curves for vector fields
42(8)
2.3 Differential k-forms
50(3)
2.4 Exterior differentiation
53(5)
2.5 The interior product operation
58(3)
2.6 The pullback operation on forms
61(7)
2.7 Divergence, curl, and gradient
68(4)
2.8 Symplectic geometry and classical mechanics
72(9)
Chapter 3 Integration of Forms
81(30)
3.1 Introduction
81(1)
3.2 The Poincare lemma for compactly supported forms on rectangles
81(5)
3.3 The Poincare lemma for compactly supported forms on open subsets of Rn
86(2)
3.4 The degree of a differentiable mapping
88(4)
3.5 The change of variables formula
92(6)
3.6 Techniques for computing the degree of a mapping
98(8)
3.7 Appendix: Sard's theorem
106(5)
Chapter 4 Manifolds and Forms on Manifolds
111(60)
4.1 Manifolds
111(8)
4.2 Tangent spaces
119(6)
4.3 Vector fields and differential forms on manifolds
125(8)
4.4 Orientations
133(9)
4.5 Integration of forms on manifolds
142(5)
4.6 Stokes' theorem and the divergence theorem
147(6)
4.7 Degree theory on manifolds
153(5)
4.8 Applications of degree theory
158(7)
4.9 The index of a vector field
165(6)
Chapters Cohomology via Forms
171(62)
5.1 The de Rham cohomology groups of a manifold
171(11)
5.2 The Mayer-Vietoris sequence
182(8)
5.3 Cohomology of good covers
190(7)
5.4 Poincare duality
197(6)
5.5 Thom classes and intersection theory
203(9)
5.6 The Lefschetz theorem
212(9)
5.7 The Kunneth theorem
221(4)
5.8 Cech cohomology
225(8)
Appendix A Bump Functions and Partitions of Unity 233(4)
Appendix B The Implicit Function Theorem 237(8)
Appendix C Good Covers and Convexity Theorems 245(4)
Bibliography 249(2)
Index of Notation 251(2)
Glossary of Terminology 253