Atnaujinkite slapukų nuostatas

El. knyga: Differential Geometry: Connections, Curvature, and Characteristic Classes

  • Formatas: PDF+DRM
  • Serija: Graduate Texts in Mathematics 275
  • Išleidimo metai: 01-Jun-2017
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319550848
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Serija: Graduate Texts in Mathematics 275
  • Išleidimo metai: 01-Jun-2017
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319550848
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern-Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss" Theorema Egregium and the Gauss-Bonnet theorem. Exercises throughout the book test the reader"s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text.Prerequisite material is contained in author"s text An Introduction to Manifolds , and can be learned in one semester. For the benefit of

the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included.Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein"s general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical sys

tems, among other fields. The field has even found applications to group theory as in Gromov"s work and to probability theory as in Diaconis"s work. It is not too far-fetched to argue that differential geometry should be in every mathematician"s arsenal.

Preface.- Chapter 1. Curvature and Vector Fields.- 1. Riemannian Manifolds.- 2. Curves.- 3. Surfaces in Space.- 4. Directional Derivative in Euclidean Space.- 5. The Shape Operator.- 6. Affine Connections.- 7. Vector Bundles.- 8. Gauss"s Theorema Egregium.- 9. Generalizations to Hypersurfaces in Rn+1.- Chapter 2. Curvature and Differential Forms.- 10. Connections on a Vector Bundle.- 11. Connection, Curvature, and Torsion Forms.- 12. The Theorema Egregium Using Forms.- Chapter 3. Geodesics.- 13. More on Affine Connections.- 14. Geodesics.- 15. Exponential Maps.- 16. Distance and Volume.- 17. The Gauss-Bonnet Theorem.- Chapter 4. Tools from Algebra and Topology.- 18. The Tensor Product and the Dual Module.- 19. The Exterior Power.- 20. Operations on Vector Bundles.- 21. Vector-Valued Forms.- Chapter 5. Vector Bundles and Characteristic Classes.- 22. Connections and Curvature Again.- 23. Characteristic Classes.- 24. Pontrjagin Classes.- 25. The Euler Class and Chern Classes.- 26. So

me Applications of Characteristic Classes.- Chapter 6. Principal Bundles and Characteristic Classes.- 27. Principal Bundles.- 28. Connections on a Principal Bundle.- 29. Horizontal Distributions on a Frame Bundle.- 30. Curvature on a Principal Bundle.- 31. Covariant Derivative on a Principal Bundle.- 32. Character Classes of Principal Bundles.- A. Manifolds.- B. Invariant Polynomials.- Hints and Solutions to Selected End-of-Section Problems.- List of Notations.- References.- Index.

Recenzijos

The textbook is a concise and well organized treatment of characteristic classes on principal bundles. It is characterized by a right balance between rigor and simplicity. It should be in every mathematician's arsenal and take its place in any mathematical library. (Nabil L. Youssef, zbMATH 1383.53001, 2018)

Preface v
Chapter 1 Curvature and Vector Fields
1(70)
§1 Riemannian Manifolds
2(7)
1.1 Inner Products on a Vector Space
2(1)
1.2 Representations of Inner Products by Symmetric Matrices
3(1)
1.3 Riemannian Metrics
4(2)
1.4 Existence of a Riemannian Metric
6(1)
Problems
7(2)
§2 Curves
9(8)
2.1 Regular Curves
9(1)
2.2 Arc Length Parametrization
10(1)
2.3 Signed Curvature of a Plane Curve
11(2)
2.4 Orientation and Curvature
13(1)
Problems
14(3)
§3 Surfaces in Space
17(5)
3.1 Principal, Mean, and Gaussian Curvatures
17(2)
3.2 Gauss's Theorema Egregium
19(1)
3.3 The Gauss-Bonnet Theorem
20(1)
Problems
21(1)
§4 Directional Derivatives in Euclidean Space
22(7)
4.1 Directional Derivatives in Euclidean Space
22(2)
4.2 Other Properties of the Directional Derivative
24(1)
4.3 Vector Fields Along a Curve
25(1)
4.4 Vector Fields Along a Submanifold
26(1)
4.5 Directional Derivatives on a Submanifold of Rn
27(1)
Problems
28(1)
§5 The Shape Operator
29(14)
5.1 Normal Vector Fields
29(1)
5.2 The Shape Operator
30(2)
5.3 Curvature and the Shape Operator
32(3)
5.4 The First and Second Fundamental Forms
35(1)
5.5 The Catenoid and the Helicoid
36(3)
Problems
39(4)
§6 Affine Connections
43(6)
6.1 Affine Connections
43(1)
6.2 Torsion and Curvature
44(1)
6.3 The Riemannian Connection
45(1)
6.4 Orthogonal Projection on a Surface in R3
46(1)
6.5 The Riemannian Connection on a Surface in R3
47(1)
Problems
48(1)
§7 Vector Bundles
49(12)
7.1 Definition of a Vector Bundle
49(2)
7.2 The Vector Space of Sections
51(1)
7.3 Extending a Local Section to a Global Section
52(1)
7.4 Local Operators
53(1)
7.5 Restriction of a Local Operator to an Open Subset
54(2)
7.6 Frames
56(1)
7.7 J-Linearity and Bundle Maps
56(3)
7.8 Multilinear Maps over Smooth Functions
59(1)
Problems
59(2)
§8 Gauss's Theorema Egregium
61(5)
8.1 The Gauss and Codazzi--Mainardi Equations
61(2)
8.2 A Proof of the Theorema Egregium
63(1)
8.3 The Gaussian Curvature in Terms of an Arbitrary Basis
64(1)
Problems
64(2)
§9 Generalizations to Hypersurfaces in Rn+1
66(5)
9.1 The Shape Operator of a Hypersurface
66(1)
9.2 The Riemannian Connection of a Hypersurface
67(1)
9.3 The Second Fundamental Form
68(1)
9.4 The Gauss Curvature and Codazzi-Mainardi Equations
68(3)
Chapter 2 Curvature and Differential Forms
71(24)
§10 Connections on a Vector Bundle
71(8)
10.1 Connections on a Vector Bundle
72(1)
10.2 Existence of a Connection on a Vector Bundle
73(1)
10.3 Curvature of a Connection on a Vector Bundle
74(1)
10.4 Riemannian Bundles
74(1)
10.5 Metric Connections
75(1)
10.6 Restricting a Connection to an Open Subset
76(1)
10.7 Connections at a Point
77(1)
Problems
78(1)
§11 Connection, Curvature, and Torsion Forms
79(9)
11.1 Connection and Curvature Forms
79(2)
11.2 Connections on a Framed Open Set
81(1)
11.3 The Gram--Schmidt Process
81(1)
11.4 Metric Connection Relative to an Orthonormal Frame
82(2)
11.5 Connections on the Tangent Bundle
84(2)
Problems
86(2)
§12 The Theorema Egregium Using Forms
88(7)
12.1 The Gauss Curvature Equation
88(2)
12.2 The Theorema Egregium
90(1)
12.3 Skew-Symmetries of the Curvature Tensor
91(1)
12.4 Sectional Curvature
92(1)
12.5 Poincare Half-Plane
92(2)
Problems
94(1)
Chapter 3 Geodesies
95(56)
§13 More on Affine Connections
95(8)
13.1 Covariant Differentiation Along a Curve
95(3)
13.2 Connection-Preserving Diffeomorphisms
98(1)
13.3 Christoffel Symbols
99(3)
Problems
102(1)
§14 Geodesies
103(12)
14.1 The Definition of a Geodesic
103(2)
14.2 Reparametrization of a Geodesic
105(1)
14.3 Existence of Geodesies
106(2)
14.4 Geodesies in the Poincare Half-Plane
108(2)
14.5 Parallel Translation
110(1)
14.6 Existence of Parallel Translation Along a Curve
111(1)
14.7 Parallel Translation on a Riemannian Manifold
112(1)
Problems
113(2)
§15 Exponential Maps
115(13)
15.1 The Exponential Map of a Connection
115(2)
15.2 The Differential of the Exponential Map
117(1)
15.3 Normal Coordinates
118(1)
15.4 Left-Invariant Vector Fields on a Lie Group
119(1)
15.5 Exponential Map for a Lie Group
120(2)
15.6 Naturality of the Exponential Map for a Lie Group
122(1)
15.7 Adjoint Representation
123(1)
15.8 Associativity of a Bi-Invariant Metric on a Lie Group
124(1)
Problems
125(1)
15.9 Addendum. The Exponential Map as a Natural Transformation
126(2)
§16 Distance and Volume
128(10)
16.1 Distance in a Riemannian Manifold
128(2)
16.2 Geodesic Completeness
130(1)
16.3 Dual 1-Forms Under a Change of Frame
131(1)
16.4 Volume Form
132(2)
16.5 The Volume Form in Local Coordinates
134(1)
Problems
135(3)
§17 The Gauss--Bonnet Theorem
138(13)
17.1 Geodesic Curvature
138(1)
17.2 The Angle Function Along a Curve
139(1)
17.3 Signed Geodesic Curvature on an Oriented Surface
139(3)
17.4 Gauss--Bonnet Formula for a Polygon
142(2)
17.5 Triangles on a Riemannian 2-Manifold
144(1)
17.6 Gauss--Bonnet Theorem for a Surface
145(2)
17.7 Gauss--Bonnet Theorem for a Hypersurface in R2n+1
147(1)
Problems
147(4)
Chapter 4 Tools from Algebra and Topology
151(48)
§18 The Tensor Product and the Dual Module
151(13)
18.1 Construction of the Tensor Product
152(1)
18.2 Universal Mapping Property for Bilinear Maps
153(1)
18.3 Characterization of the Tensor Product
154(2)
18.4 A Basis for the Tensor Product
156(1)
18.5 The Dual Module
157(1)
18.6 Identities for the Tensor Product
158(2)
18.7 Functoriality of the Tensor Product
160(1)
18.8 Generalization to Multilinear Maps
161(1)
18.9 Associativity of the Tensor Product
161(1)
18.10 The Tensor Algebra
162(1)
Problems
163(1)
§19 The Exterior Power
164(10)
19.1 The Exterior Algebra
164(1)
19.2 Properties of the Wedge Product
164(2)
19.3 Universal Mapping Property for Alternating k-Linear Maps
166(1)
19.4 A Basis for ΛkV
167(2)
19.5 Nondegenerate Pairings
169(1)
19.6 A Nondegenerate Pairing of Λ(VV) with ΛkV
170(2)
19.7 A Formula for the Wedge Product
172(1)
Problems
173(1)
§20 Operations on Vector Bundles
174(12)
20.1 Vector Subbundles
174(1)
20.2 Subbundle Criterion
175(1)
20.3 Quotient Bundles
176(1)
20.4 The Pullback Bundle
177(3)
20.5 Examples of the Pullback Bundle
180(1)
20.6 The Direct Sum of Vector Bundles
181(2)
20.7 Other Operations on Vector Bundles
183(2)
Problems
185(1)
§21 Vector-Valued Forms
186(13)
21.1 Vector-Valued Forms as Sections of a Vector Bundle
186(2)
21.2 Products of Vector-Valued Forms
188(2)
21.3 Directional Derivative of a Vector-Valued Function
190(1)
21.4 Exterior Derivative of a Vector-Valued Form
190(1)
21.5 Differential Forms with Values in a Lie Algebra
191(2)
21.6 Pullback of Vector-Valued Forms
193(1)
21.7 Forms with Values in a Vector Bundle
194(1)
21.8 Tensor Fields on a Manifold
195(1)
21.9 The Tensor Criterion
196(1)
21.10 Remark on Signs Concerning Vector-Valued Forms
197(1)
Problems
197(2)
Chapter 5 Vector Bundles and Characteristic Classes
199(42)
§22 Connections and Curvature Again
200(12)
22.1 Connection and Curvature Matrices Under a Change of Frame
201(2)
22.2 Bianchi Identities
203(1)
22.3 The First Bianchi Identity in Vector Form
204(1)
22.4 Symmetry Properties of the Curvature Tensor
205(1)
22.5 Covariant Derivative of Tensor Fields
206(1)
22.6 The Second Bianchi Identity in Vector Form
207(1)
22.7 Ricci Curvature
208(1)
22.8 Scalar Curvature
209(1)
22.9 Defining a Connection Using Connection Matrices
209(1)
22.10 Induced Connection on a Pullback Bundle
210(1)
Problems
210(2)
§23 Characteristic Classes
212(11)
23.1 Invariant Polynomials on gl(r,R)
212(1)
23.2 The Chern--Weil Homomorphism
213(2)
23.3 Characteristic Forms Are Closed
215(1)
23.4 Differential Forms Depending on a Real Parameter
216(2)
23.5 Independence of Characteristic Classes of a Connection
218(2)
23.6 Functorial Definition of a Characteristic Class
220(1)
23.7 Naturality
221(1)
Problems
221(2)
§24 Pontrjagin Classes
223(5)
24.1 Vanishing of Characteristic Classes
223(2)
24.2 Pontrjagin Classes
225(1)
24.3 The Whitney Product Formula
226(2)
§25 The Euler Class and Chern Classes
228(8)
25.1 Orientation on a Vector Bundle
228(1)
25.2 Characteristic Classes of an Oriented Vector Bundle
229(1)
25.3 The Pfaffian of a Skew-Symmetric Matrix
230(3)
25.4 The Euler Class
233(1)
25.5 Generalized Gauss--Bonnet Theorem
233(1)
25.6 Hermitian Metrics
234(1)
25.7 Connections and Curvature on a Complex Vector Bundle
234(1)
25.8 Chern Classes
235(1)
Problems
235(1)
§26 Some Applications of Characteristic Classes
236(5)
26.1 The Generalized Gauss--Bonnet Theorem
236(1)
26.2 Characteristic Numbers
236(1)
26.3 The Cobordism Problem
237(1)
26.4 The Embedding Problem
237(1)
26.5 The Hirzebruch Signature Formula
238(1)
26.6 The Riemann--Roch Problem
238(3)
Chapter 6 Principal Bundles and Characteristic Classes
241(52)
§27 Principal Bundles
241(13)
27.1 Principal Bundles
242(4)
27.2 The Frame Bundle of a Vector Bundle
246(1)
27.3 Fundamental Vector Fields of a Right Action
247(2)
27.4 Integral Curves of a Fundamental Vector Field
249(1)
27.5 Vertical Subbundle of the Tangent Bundle TP
250(1)
27.6 Horizontal Distributions on a Principal Bundle
251(1)
Problems
252(2)
§28 Connections on a Principal Bundle
254(8)
28.1 Connections on a Principal Bundle
254(2)
28.2 Vertical and Horizontal Components of a Tangent Vector
256(1)
28.3 The Horizontal Distribution of an Ehresmann Connection
257(2)
28.4 Horizontal Lift of a Vector Field to a Principal Bundle
259(1)
28.5 Lie Bracket of a Fundamental Vector Field
260(1)
Problems
260(2)
§29 Horizontal Distributions on a Frame Bundle
262(8)
29.1 Parallel Translation in a Vector Bundle
262(2)
29.2 Horizontal Vectors on a Frame Bundle
264(2)
29.3 Horizontal Lift of a Vector Field to a Frame Bundle
266(2)
29.4 Pullback of a Connection on a Frame Bundle Under a Section
268(2)
§30 Curvature on a Principal Bundle
270(5)
30.1 Curvature Form on a Principal Bundle
270(1)
30.2 Properties of the Curvature Form
271(3)
Problems
274(1)
§31 Covariant Derivative on a Principal Bundle
275(12)
31.1 The Associated Bundle
275(1)
31.2 The Fiber of the Associated Bundle
276(1)
31.3 Tensorial Forms on a Principal Bundle
277(3)
31.4 Covariant Derivative
280(2)
31.5 A Formula for the Covariant Derivative of a Tensorial Form
282(4)
Problems
286(1)
§32 Characteristic Classes of Principal Bundles
287(6)
32.1 Invariant Polynomials on a Lie Algebra
287(1)
32.2 The Chern--Weil Homomorphism
287(4)
Problems
291(2)
Appendix
293(28)
§A Manifolds
293(13)
A.1 Manifolds and Smooth Maps
293(2)
A.2 Tangent Vectors
295(1)
A.3 Vector Fields
296(1)
A.4 Differential Forms
297(2)
A.5 Exterior Differentiation on a Manifold
299(3)
A.6 Exterior Differentiation on R3
302(1)
A.7 Pullback of Differential Forms
303(1)
Problems
304(2)
§B Invariant Polynomials
306(15)
B.1 Polynomials Versus Polynomial Functions
306(1)
B.2 Polynomial Identities
307(1)
B.3 Invariant Polynomials on gl(r,F)
308(2)
B.4 Invariant Complex Polynomials
310(3)
B 5 L-Polynomials, Todd Polynomials, and the Chern Character
313(2)
B.6 Invariant Real Polynomials
315(2)
B.7 Newton's Identities
317(2)
Problems
319(2)
Hints and Solutions to Selected End-of-Section Problems 321(8)
List of Notations 329(6)
References 335(2)
Index 337
Loring W. Tu was born in Taipei, Taiwan, and grew up in Taiwan, Canada, and the United States. He attended McGill and Princeton as an undergraduate, and obtained his Ph.D. from Harvard University under the supervision of Phillip A. Griffiths. He has taught at the University of Michigan, Ann Arbor, and at Johns Hopkins University, and is currently Professor of Mathematics at Tufts University. An algebraic geometer by training, he has done research at the interface of algebraic geometry, topology, and differential geometry, including Hodge theory, degeneracy loci, moduli spaces of vector bundles, and equivariant cohomology. He is the coauthor with Raoul Bott of Differential Forms in Algebraic Topology and the author of An Introduction to Manifolds.