Atnaujinkite slapukų nuostatas

El. knyga: Differential Geometry: Frenet Equations and Differentiable Maps

  • Formatas: 290 pages
  • Serija: De Gruyter Textbook
  • Išleidimo metai: 03-Sep-2024
  • Leidėjas: De Gruyter
  • Kalba: eng
  • ISBN-13: 9783111501857
  • Formatas: 290 pages
  • Serija: De Gruyter Textbook
  • Išleidimo metai: 03-Sep-2024
  • Leidėjas: De Gruyter
  • Kalba: eng
  • ISBN-13: 9783111501857

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This textbook offers a different approach to classical textbooks in Differential Geometry. It includes practical examples and over 300 advanced problems designed for graduate students in various fields, such as fluid mechanics, gravitational fields, nuclear physics, electromagnetism, solid-state physics, and thermodynamics. Additionally, it contains problems tailored for students specializing in chemical, civil, and electrical engineering and electronics. The book provides fully detailed solutions to each problem and includes many illustrations to help visualize theoretical concepts.

The book introduces Frenet equations for plane and space curves, presents the basic theory of surfaces, and introduces differentiable maps and differentials on the surface. It also provides the first and second fundamental forms of surfaces, minimal surfaces, and geodesics. Furthermore, it contains a detailed analysis of covariant derivatives and manifolds.

The book covers many classical results, such as the Lancret Theorem, Shell Theorem, Joachimsthal Theorem, and Meusnier Theorem, as well as the fundamental theorems of plane curves, space curves, surfaces, and manifolds.

Muhittin Evren Aydin a mathematician who works on various aspects of mathematics. Currently he focuses on differential geometry, Riemannian geometry, fractional calculus, microeconomics, and applications of differential geometry.





Svetlin G. Georgiev is a mathematician who works on various aspects of mathematics. Currently he focuses on ordinary and partial differential equations, differential geometry, dynamic geometry on time scales, integral equations on time scales, theory of distributions and harmonic analysis.