|
|
xv | |
Introduction |
|
1 | (8) |
|
Part One Geometric Evolution Equations and Curvature Flow |
|
|
9 | (132) |
|
1 Real Geometric Invariant Theory |
|
|
11 | (39) |
|
|
|
|
11 | (5) |
|
|
16 | (2) |
|
1.3 Comparison with Complex and Symplectic Case |
|
|
18 | (1) |
|
|
19 | (4) |
|
1.5 Separation of Closed T-Invariant Sets |
|
|
23 | (2) |
|
1.6 The General Case of Real Reductive Groups |
|
|
25 | (3) |
|
|
28 | (8) |
|
1.8 Properties of Critical Points of the Energy Map |
|
|
36 | (3) |
|
|
39 | (2) |
|
|
41 | (9) |
|
1.10.1 Real Reductive Lie Groups |
|
|
41 | (3) |
|
1.10.2 The Parabolic Subgroup |
|
|
44 | (3) |
|
|
47 | (3) |
|
2 Convex Ancient Solutions to Mean Curvature Flow |
|
|
50 | (25) |
|
|
|
|
|
50 | (2) |
|
2.2 Asymptotics for Convex Ancient Solutions |
|
|
52 | (4) |
|
2.3 X.-J. Wang's Dichotomy for Convex Ancient Solutions |
|
|
56 | (10) |
|
2.4 Convex Ancient Solutions to Curve Shortening Flow |
|
|
66 | (1) |
|
2.5 Rigidity of the Shrinking Sphere |
|
|
67 | (1) |
|
2.6 Asymptotics for Convex Translators |
|
|
68 | (2) |
|
2.7 X.-J. Wang's Dichotomy for Convex Translators |
|
|
70 | (1) |
|
2.8 Rigidity of the Bowl Soliton |
|
|
71 | (4) |
|
|
72 | (3) |
|
3 Negatively Curved Three-Manifolds, Hyperbolic Metrics, Isometric Embeddings in Minkowski Space and the Cross Curvature Flow |
|
|
75 | (23) |
|
|
|
|
|
75 | (2) |
|
3.2 Geometrisation of Three-Manifolds |
|
|
77 | (2) |
|
3.3 Embeddability and Hyperbolic Metrics |
|
|
79 | (6) |
|
3.4 The Cross Curvature Flow |
|
|
85 | (13) |
|
3.4.1 Definition and Basic Properties of the Flow |
|
|
85 | (2) |
|
3.4.2 Short Time Existence and Uniqueness |
|
|
87 | (3) |
|
3.4.3 Basic Identities and Evolution Equations |
|
|
90 | (2) |
|
3.4.4 Towards Hyperbolic Convergence |
|
|
92 | (2) |
|
3.4.5 Harnack Inequality and Solitons |
|
|
94 | (1) |
|
3.4.6 Monotonicity of Einstein Volume |
|
|
95 | (1) |
|
|
96 | (2) |
|
4 A Mean Curvature Flow for Conformally Compact |
|
|
98 | (20) |
|
|
|
|
98 | (3) |
|
4.2 Conforinal Geometry and Hypersurfaces in Conformally Compact Manifolds |
|
|
101 | (7) |
|
4.2.1 Conformal Manifolds |
|
|
102 | (1) |
|
4.2.2 The Tractor Connection |
|
|
102 | (1) |
|
4.2.3 Conformally Compact Manifolds |
|
|
103 | (2) |
|
|
105 | (1) |
|
4.2.5 A Hypersurface Flow for Conformally Compact Manifolds |
|
|
106 | (1) |
|
4.2.6 Boundary Conditions |
|
|
107 | (1) |
|
|
107 | (1) |
|
|
108 | (10) |
|
4.3.1 Treating the Flow as a Nonlinear Partial Differential Equation |
|
|
108 | (4) |
|
4.3.2 Generalised Mean Curvature Flow in Hyperbolic Space |
|
|
112 | (1) |
|
4.3.3 Long Time Existence and Convergence |
|
|
113 | (2) |
|
4.3.4 Generalised Mean Curvature Flow in Riemannian Manifolds |
|
|
115 | (1) |
|
|
115 | (3) |
|
5 A Survey on the Ricci Flow on Singular Spaces |
|
|
118 | (23) |
|
|
|
5.1 Introduction and Geometric Preliminaries |
|
|
118 | (4) |
|
5.1.1 Isolated Conical Singularities |
|
|
119 | (2) |
|
5.1.2 Ricci de Turck Flow and the Lichnerowicz Laplacian |
|
|
121 | (1) |
|
5.2 Existence of the Singular Ricci de Turck Flow |
|
|
122 | (5) |
|
5.2.1 Tangential Stability |
|
|
123 | (1) |
|
5.2.2 The Existence Result |
|
|
124 | (1) |
|
5.2.3 Characterizing Tangential Stability |
|
|
125 | (2) |
|
5.3 Stability of the Singular Ricci de Turck Flow |
|
|
127 | (1) |
|
5.4 Perelman's Entropies on Singular Spaces |
|
|
128 | (4) |
|
|
128 | (1) |
|
5.4.2 The Ricci Shrinker Entropy |
|
|
129 | (1) |
|
5.4.3 The Ricci Expander Entropy |
|
|
129 | (3) |
|
5.5 Curvature Quantities Along Singular Ricci de Turck Flow |
|
|
132 | (2) |
|
5.5.1 Bounded Ricci Curvature Along Singular Ricci de Turck Flow |
|
|
132 | (1) |
|
5.5.2 Positive Scalar Curvature Along Singular Ricci de Turck Flow |
|
|
133 | (1) |
|
5.6 Open Questions and Further Research Directions |
|
|
134 | (1) |
|
5.7 Appendix: Sobolev and Holder Spaces |
|
|
134 | (7) |
|
|
137 | (4) |
|
Part Two Structures on Manifolds and Mathematical Physics |
|
|
141 | (142) |
|
6 Some Open Problems in Sasaki Geometry |
|
|
143 | (26) |
|
|
|
|
|
|
143 | (2) |
|
6.2 Brief Review of Sasaki Geometry |
|
|
145 | (5) |
|
|
145 | (2) |
|
6.2.2 The Transverse Holomorphic Structure |
|
|
147 | (1) |
|
6.2.3 The Lie Algebra of Killing Potentials |
|
|
147 | (3) |
|
6.3 Extremal Sasaki Geometry |
|
|
150 | (11) |
|
6.3.1 Transverse Futaki--Mabuchi |
|
|
150 | (3) |
|
6.3.2 The Einstein--Hilbert Functional |
|
|
153 | (2) |
|
6.3.3 The Sasaki Energy Functional |
|
|
155 | (6) |
|
6.4 The Functionals H, Sε on Lens Space Bundles Over Riemann Surfaces |
|
|
161 | (8) |
|
|
163 | (3) |
|
|
166 | (3) |
|
7 The Prescribed Ricci Curvature Problem for Homogeneous |
|
|
169 | (24) |
|
|
|
|
169 | (1) |
|
7.2 The Prescribed Ricci Curvature Problem |
|
|
169 | (2) |
|
7.3 Compact Homogeneous Spaces |
|
|
171 | (14) |
|
7.3.1 The Variational Interpretation |
|
|
172 | (1) |
|
|
173 | (1) |
|
7.3.3 The Structure Constants |
|
|
173 | (1) |
|
7.3.4 The Scalar Curvature Functional and its Extension |
|
|
174 | (2) |
|
7.3.5 Non-Maximal Isotropy: The First Existence Theorem |
|
|
176 | (2) |
|
7.3.6 Non-Maximal Isotropy: The Second Existence Theorem |
|
|
178 | (1) |
|
7.3.7 The Case of Two Isotropy Summands |
|
|
179 | (2) |
|
7.3.8 Homogeneous Spheres |
|
|
181 | (2) |
|
|
183 | (2) |
|
|
185 | (1) |
|
7.4 Open Questions and Non-Compact Homogeneous Spaces |
|
|
185 | (8) |
|
7.4.1 The Non-Compact Case |
|
|
186 | (1) |
|
7.4.2 Unimodular Lie Groups of Dimension 3 |
|
|
187 | (3) |
|
|
190 | (3) |
|
8 Singular Yamabe and Obata Problems |
|
|
193 | (22) |
|
|
|
|
193 | (2) |
|
8.2 Background and a Singular Obata Problem |
|
|
195 | (6) |
|
8.3 Tractor Calculus for Hypersurface Embeddings |
|
|
201 | (10) |
|
|
209 | (2) |
|
8.4 Singular Yamabe and Obata Problems |
|
|
211 | (4) |
|
|
212 | (3) |
|
9 Einstein Metrics, Harmonic Forms and Conformally Kahler Geometry |
|
|
215 | (26) |
|
|
|
215 | (5) |
|
9.2 An Integral Weitzenbock Formula |
|
|
220 | (8) |
|
9.3 Some Almost-Kahler Geometry |
|
|
228 | (7) |
|
|
235 | (6) |
|
|
238 | (3) |
|
10 Construction of the Supersymmetric Path Integral: A Survey |
|
|
241 | (19) |
|
|
|
241 | (3) |
|
10.2 First Construction: The Top Degree Functional |
|
|
244 | (5) |
|
10.3 Second Construction: The Chern Character |
|
|
249 | (4) |
|
10.4 Bismut--Chern Characters, Entire Chains and the Localization Formula |
|
|
253 | (7) |
|
|
257 | (3) |
|
11 Tight Models of de-Rham Algebras of Highly Connected |
|
|
260 | (23) |
|
Manifolds L. Schwachhofer |
|
|
|
260 | (3) |
|
11.2 Rational and Weak Equivalence |
|
|
263 | (2) |
|
11.3 Poincare DGCAs and DGCAs of Hodge Type |
|
|
265 | (5) |
|
11.4 Small Algebras of Hodge Type DGCAs |
|
|
270 | (3) |
|
11.5 Tight DGCAs of Highly Connected DGCAs |
|
|
273 | (4) |
|
11.6 The Bianchi-Massey Tensor |
|
|
277 | (6) |
|
|
280 | (3) |
|
Part Three Recent Developments in Non-Negative Sectional Curvature |
|
|
283 | |
|
12 Fake Lens Spaces and Non-Negative Sectional Curvature |
|
|
285 | (6) |
|
|
|
|
|
285 | (1) |
|
12.2 "Ze Actions on the Family J |
|
|
286 | (5) |
|
|
290 | (1) |
|
13 Collapsed 3-Dimensional Alexandrov Spaces: A Brief Survey |
|
|
291 | (20) |
|
|
|
|
|
291 | (2) |
|
13.2 Basic Alexandrov Geometry |
|
|
293 | (5) |
|
13.3 Three-Dimensional Alexandrov Spaces |
|
|
298 | (4) |
|
13.3.1 Geometric 3-Alexandrov Spaces |
|
|
301 | (1) |
|
13.3.2 Geometrization of 3-Alexandrov Spaces |
|
|
301 | (1) |
|
13.4 Collapsed Three-Dimensional Alexandrov Spaces |
|
|
302 | (9) |
|
13.4.1 General Structure Results |
|
|
302 | (5) |
|
13.4.2 Geometrization of Sufficiently Collapsed Three-Dimensional Alexandrov Spaces |
|
|
307 | (1) |
|
|
308 | (3) |
|
14 Pseudo-Angle Systems and the Simplicial Gauss--Bonnet--Chern |
|
|
311 | (15) |
|
|
|
311 | (2) |
|
14.2 The Simplicial Gauss--Bonnet--Chern Theorem |
|
|
313 | (3) |
|
14.3 Systems of Pseudo-Angles |
|
|
316 | (3) |
|
14.4 Combinatorial Riemannian Manifolds |
|
|
319 | (1) |
|
14.5 Simplicial Sectional Curvature |
|
|
320 | (2) |
|
14.6 Simplicial Sectional Curvature and the Hopf Conjecture |
|
|
322 | (4) |
|
|
325 | (1) |
|
15 Aspects and Examples on Quantitative Stratification with Lower Curvature Bounds |
|
|
326 | (26) |
|
|
|
326 | (2) |
|
15.2 Stratification of Singular Sets |
|
|
328 | (2) |
|
15.3 Quantitative Stratification |
|
|
330 | (5) |
|
|
330 | (2) |
|
|
332 | (3) |
|
15.4 Key Ingredients and Framework |
|
|
335 | (8) |
|
15.4.1 Monotonicity Formula and Bad Scales |
|
|
335 | (3) |
|
|
338 | (2) |
|
15.4.3 Dimension Reduction |
|
|
340 | (1) |
|
15.4.4 Good-Scale Annuli Covering |
|
|
341 | (2) |
|
15.5 Spaces whose Singular Sets are Cantor Sets |
|
|
343 | (9) |
|
|
350 | (2) |
|
16 Universal Covers of Ricci Limit and RCD Spaces |
|
|
352 | (21) |
|
|
|
|
352 | (2) |
|
16.2 Some Properties of Ricci Limit and RCD Spaces |
|
|
354 | (5) |
|
16.3 Universal and δ-Covers |
|
|
359 | (5) |
|
16.4 Non-Collapsing Ricci Limit Spaces |
|
|
364 | (9) |
|
|
369 | (4) |
|
17 Local and Global Homogeneity for Manifolds of Positive Curvature |
|
|
373 | |
|
|
|
373 | (2) |
|
17.2 The Classification for Positive Curvature |
|
|
375 | (2) |
|
17.3 Positive Curvature and Isotropy Splitting |
|
|
377 | (1) |
|
17.4 The Three Remaining Positive Curvature Cases |
|
|
378 | (2) |
|
17.5 Dropping Normality in Positive Curvature |
|
|
380 | |
|
|
383 | |