Atnaujinkite slapukų nuostatas

El. knyga: Differential Geometry: Manifolds, Curves, and Surfaces: Manifolds, Curves, and Surfaces

  • Formatas: PDF+DRM
  • Serija: Graduate Texts in Mathematics 115
  • Išleidimo metai: 06-Dec-2012
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9781461210337
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Serija: Graduate Texts in Mathematics 115
  • Išleidimo metai: 06-Dec-2012
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9781461210337
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book consists of two parts, different in form but similar in spirit. The first, which comprises chapters 0 through 9, is a revised and somewhat enlarged version of the 1972 book Geometrie Differentielle. The second part, chapters 10 and 11, is an attempt to remedy the notorious absence in the original book of any treatment of surfaces in three-space, an omission all the more unforgivable in that surfaces are some of the most common geometrical objects, not only in mathematics but in many branches of physics. Geometrie Differentielle was based on a course I taught in Paris in 1969- 70 and again in 1970-71. In designing this course I was decisively influ­ enced by a conversation with Serge Lang, and I let myself be guided by three general ideas. First, to avoid making the statement and proof of Stokes' formula the climax of the course and running out of time before any of its applications could be discussed. Second, to illustrate each new notion with non-trivial examples, as soon as possible after its introduc­ tion. And finally, to familiarize geometry-oriented students with analysis and analysis-oriented students with geometry, at least in what concerns manifolds.

Daugiau informacijos

Springer Book Archives
0. Background.- 0.0 Notation and Recap.- 0.1 Exterior Algebra.- 0.2
Differential Calculus.- 0.3 Differential Forms.- 0.4 Integration.- 0.5
Exercises.-
1. Differential Equations.- 1.1 Generalities.- 1.2 Equations with
Constant Coefficients. Existence of Local Solutions.- 1.3 Global Uniqueness
and Global Flows.- 1.4 Time- and Parameter-Dependent Vector Fields.- 1.5
Time-Dependent Vector Fields: Uniqueness And Global Flow.- 1.6 Cultural
Digression.-
2. Differentiable Manifolds.- 2.1 Submanifolds of Rn.- 2.2
Abstract Manifolds.- 2.3 Differentiable Maps.- 2.4 Covering Maps and
Quotients.- 2.5 Tangent Spaces.- 2.6 Submanifolds, Immersions, Submersions
and Embeddings.- 2.7 Normal Bundles and Tubular Neighborhoods.- 2.8
Exercises.-
3. Partitions of Unity, Densities and Curves.- 3.1 Embeddings of
Compact Manifolds.- 3.2 Partitions of Unity.- 3.3 Densities.- 3.4
Classification of Connected One-Dimensional Manifolds.- 3.5 Vector Fields and
Differential Equations on Manifolds.- 3.6 Exercises.-
4. Critical Points.-
4.1 Definitions and Examples.- 4.2 Non-Degenerate Critical Points.- 4.3
Sards Theorem.- 4.4 Exercises.-
5. Differential Forms.- 5.1 The Bundle
?rT*X.- 5.2 Differential Forms on a Manifold.- 5.3 Volume Forms and
Orientation.- 5.4 De Rham Groups.- 5.5 Lie Derivatives.- 5.6 Star-shaped Sets
and Poincarés Lemma.- 5.7 De Rham Groups of Spheres and Projective Spaces.-
5.8 De Rham Groups of Tori.- 5.9 Exercises.-
6. Integration of Differential
Forms.- 6.1 Integrating Forms of Maximal Degree.- 6.2 Stokes Theorem.- 6.3
First Applications of Stokes Theorem.- 6.4 Canonical Volume Forms.- 6.5
Volume of a Submanifold of Euclidean Space.- 6.6 Canonical Density on a
Submanifold of Euclidean Space.- 6.7 Volume of Tubes I.- 6.8 Volume of Tubes
II.- 6.9 Volume of Tubes III.-6.10 Exercises.-
7. Degree Theory.- 7.1
Preliminary Lemmas.- 7.2 Calculation of Rd(X).- 7.3 The Degree of a Map.- 7.4
Invariance under Homotopy. Applications.- 7.5 Volume of Tubes and the
Gauss-Bonnet Formula.- 7.6 Self-Maps of the Circle.- 7.7 Index of Vector
Fields on Abstract Manifolds.- 7.8 Exercises.-
8. Curves: The Local Theory.-
8.0 Introduction.- 8.1 Definitions.- 8.2 Affine Invariants: Tangent,
Osculating Plan, Concavity.- 8.3 Arclength.- 8.4 Curvature.- 8.5 Signed
Curvature of a Plane Curve.- 8.6 Torsion of Three-Dimensional Curves.- 8.7
Exercises.-
9. Plane Curves: The Global Theory.- 9.1 Definitions.- 9.2
Jordans Theorem.- 9.3 The Isoperimetric Inequality.- 9.4 The Turning
Number.- 9.5 The Turning Tangent Theorem.- 9.6 Global Convexity.- 9.7 The
Four-Vertex Theorem.- 9.8 The Fabricius-Bjerre-Halpern Formula.- 9.9
Exercises.-
10. A Guide to the Local Theory of Surfaces in R3.- 10.1
Definitions.- 10.2 Examples.- 10.3 The Two Fundamental Forms.- 10.4 What the
First Fundamental Form Is Good For.- 10.5 Gaussian Curvature.- 10.6 What the
Second Fundamental Form Is Good For.- 10.7 Links Between the two Fundamental
Forms.- 10.8 A Word about Hypersurfaces in Rn+1.-
11. A Guide to the Global
Theory of Surfaces.- 11.1 Shortest Paths.- 11.2 Surfaces of Constant
Curvature.- 11.3 The Two Variation Formulas.- 11.4 Shortest Paths and the
Injectivity Radius.- 11.5 Manifolds with Curvature Bounded Below.- 11.6
Manifolds with Curvature Bounded Above.- 11.7 The Gauss-Bonnet and Hopf
Formulas.- 11.8 The Isoperimetric Inequality on Surfaces.- 11.9 Closed
Geodesics and Isosystolic Inequalities.- 11.10 Surfaces AU of Whose Geodesics
Are Closed.- 11.11 Transition: Embedding and Immersion Problems.- 11.12
Surfaces of Zero Curvature.- 11.13 Surfaces of Non-Negative Curvature.-11.14
Uniqueness and Rigidity Results.- 11.15 Surfaces of Negative Curvature.-
11.16 Minimal Surfaces.- 11.17 Surfaces of Constant Mean Curvature, or Soap
Bubbles.- 11.18 Weingarten Surfaces.- 11.19 Envelopes of Families of Planes.-
11.20 Isoperimetric Inequalities for Surfaces.- 11.21 A Pot-pourri of
Characteristic Properties.- Index of Symbols and Notations.