Atnaujinkite slapukų nuostatas

El. knyga: Differential and Riemannian Manifolds

  • Formatas: PDF+DRM
  • Serija: Graduate Texts in Mathematics 160
  • Išleidimo metai: 06-Dec-2012
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9781461241829
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Serija: Graduate Texts in Mathematics 160
  • Išleidimo metai: 06-Dec-2012
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9781461241829
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This text provides an introduction to basic concepts in differential topology, differential geometry, and differential equations, and some of the main basic theorems in all three areas: for instance, the existence, uniqueness, and smoothness theorems for differential equations and the flow of a vector field; the basic theory of vector bundles including the existence of tubular neighborhoods for a submanifold; the calculus of differential forms; basic notions of symplectic manifolds, including the canonical 2-form; sprays and covariant derivatives for Riemannian and pseudo-Riemannian manifolds; applications to the exponential map, including the Cartan-Hadamard theorem, and the first basic theorem of calculus of variations. These are all covered for infinite-dimensional manifolds, modeled on Banach and Hilbert spaces, at no cost in complications, and some gain in the elegance of the proofs. In the finite-dimensional case, differential forms of top degree are discussed, leading to Stokes' theorem (even for manifolds with singular boundary), and several of its applications to the differential or Riemannian case.

This is the third version of a book on Differential Manifolds; in this latest expansion three chapters have been added on Riemannian and pseudo-Riemannian geometry, and the section on sprays and Stokes' theorem have been rewritten.This text provides an introduction to basic concepts in differential topology, differential geometry and differential equations. In differential topology one studies classes of maps and the possibility of finding differentiable maps in them, and one uses differentiable structures on manifolds to determine their topological structure. In differential geometry one adds structures to the manifold (vector fields, sprays, a metric, and so forth) and studies their properties. In differential equations one studies vector fields and their integral curves, singular points, stable and unstable manifolds, and the like.

Recenzijos

S. Lang



Differential and Riemannian Manifolds



"An introduction to differential geometry, starting from recalling differential calculus and going through all the basic topics such as manifolds, vector bundles, vector fields, the theorem of Frobenius, Riemannian metrics and curvature. Useful to the researcher wishing to learn about infinite-dimensional geometry."



MATHEMATICAL REVIEWS

I Differential Calculus.- §1. Categories.- §2. Topological Vector
Spaces.- §3. Derivatives and Composition of Maps.- §4. Integration and
Taylors Formula.- §5. The Inverse Mapping Theorem.- II Manifolds.- §1.
Atlases, Charts, Morphisms.- §2. Submanifolds, Immersions, Submersions.- §3.
Partitions of Unity.- §4. Manifolds with Boundary.- III Vector Bundles.- §1.
Definition, Pull Backs.- §2. The Tangent Bundle.- §3. Exact Sequences of
Bundles.- §4. Operations on Vector Bundles.- §5. Splitting of Vector
Bundles.- IV Vector Fields and Differential Equations.- §1. Existence Theorem
for Differential Equations.- §2. Vector Fields, Curves, and Flows.- §3.
Sprays.- §4. The Flow of a Spray and the Exponential Map.- §5. Existence of
Tubular Neighborhoods.- §6. Uniqueness of Tubular Neighborhoods.- V
Operations on Vector Fields and Differential Forms.- §1. Vector Fields,
Differential Operators, Brackets.- §2. Lie Derivative.- $3. Exterior
Derivative.- §4. The Poincaré Lemma.- §5. Contractions and Lie Derivative.-
§6. Vector Fields and 1-Forms Under Self Duality.- §7. The Canonical 2-Form.-
§8. Darbouxs Theorem.- VI The Theorem of Frobenius.- §1. Statement of the
Theorem.- §2. Differential Equations Depending on a Parameter.- §3. Proof of
the Theorem.- §4. The Global Formulation.- §5. Lie Groups and Subgroups.- VII
Metrics.- §1. Definition and Functoriality.- §2. The Hilbert Group.- §3.
Reduction to the Hilbert Group.- §4. Hilbertian Tubular Neighborhoods.- §5.
The MorsePalais Lemma.- §6. The Riemannian Distance.- §7. The Canonical
Spray.- VIII Covariant Derivatives and Geodesics.- §1. Basic Properties.- §2.
Sprays and Covariant Derivatives.- §3. Derivative Along a Curve and
Parallelism.- §4. The Metric Derivative.- §5. More LocalResults on the
Exponential Map.- §6. Riemannian Geodesic Length and Completeness.- IX
Curvature.- §1. The Riemann Tensor.- §2. Jacobi Lifts.- §3. Application of
Jacobi Lifts to dexpx.- §4. The Index Form, Variations, and the Second
Variation Formula.- §5. Taylor Expansions.- X Volume Forms.- §1. The
Riemannian Volume Form.- §2. Covariant Derivatives.- §3. The Jacobian
Determinant of the Exponential Map.- §4. The Hodge Star on Forms.- §5. Hodge
Decomposition of Differential Forms.- XI Integration of Differential Forms.-
§1. Sets of Measure 0.- §2. Change of Variables Formula.- §3. Orientation.-
§4. The Measure Associated with a Differential Form.- XII Stokes Theorem.-
§1. Stokes Theorem for a Rectangular Simplex.- §2. Stokes Theorem on a
Manifold.- §3. Stokes Theorem with Singularities.- XIII Applications of
Stokes Theorem.- §1. The Maximal de Rham Cohomology.- §2. Mosers Theorem.-
§3. The Divergence Theorem.- §4. The Adjoint of d for Higher Degree Forms.-
§5. Cauchys Theorem.- §6. The Residue Theorem.- Appendix The Spectral
Theorem.- §1. Hilbert Space.- §2. Functionals and Operators.- §3. Hermitian
Operators.