Atnaujinkite slapukų nuostatas

Differentiation of Chiral Compounds Using NMR Spectroscopy 2nd edition [Kietas viršelis]

  • Formatas: Hardback, 608 pages, aukštis x plotis x storis: 256x180x34 mm, weight: 1429 g
  • Išleidimo metai: 10-Aug-2018
  • Leidėjas: John Wiley & Sons Inc
  • ISBN-10: 1119323916
  • ISBN-13: 9781119323914
  • Formatas: Hardback, 608 pages, aukštis x plotis x storis: 256x180x34 mm, weight: 1429 g
  • Išleidimo metai: 10-Aug-2018
  • Leidėjas: John Wiley & Sons Inc
  • ISBN-10: 1119323916
  • ISBN-13: 9781119323914

An updated guide to the most current information available for determining how to use NMR spectroscopy to differentiate chiral compounds 

Differentiation of Chiral Compounds Using NMR Spectroscopy offers a thoroughly revised second edition to the essential volume that puts the focus on the chiral systems that are commercially available and have been widely vetted for use in NMR spectroscopy. The text covers a broad range of reagents that make it possible to determine the enantiomeric purity and assign the absolute configuration of many classes of compounds.

Comprehensive in scope, the text describes the chiral NMR differentiating agents as derivatizing agents, solvating agents, metal-based reagents and liquid crystals and gels, and explains the range and types of compounds for which they can be used for analysis. New to this edition are the most recent findings in the field as well as the development of advanced NMR measurement techniques that allow for the simplification of complex spectra resulting in more readily identified enantiodifferentiation. This important resource:

  • Includes the most recent coverage of a large range of compounds that can be analyzed using chiral NMR reagents
  • Explores the use of chiral NMR reagents and explains their relationship to the stereochemistry of the analyzed molecules
  • Offers the essential information needed to help decide which method is the best NMR method to apply to a class or molecules
  • Contains experimental strategies for using the reagents that are likely to improve the quality of the results

Differentiation of Chiral Compounds Using NMR Spectroscopy is a comprehensive guide designed for investigators planning to use NMR spectroscopy to determine enantiomeric purity or assign the absolute configuration of a compound.

Preface xix
Acknowledgments xxi
1 Introduction
1(18)
1.1 Chiral Derivatizing Agents
1(1)
1.2 Chiral Solvating Agents
2(7)
1.3 NMR Methods to Improve the Quality of Data with CSAs and CDAs
9(5)
1.4 Overview of Chiral Reagents and Methodologies
14(5)
2 Aryl-Containing Carboxylic Acids
19(60)
2.1 Introduction
19(3)
2.2 α-Methoxy-α-Trifluoromethylphenylacetic Acid (Mosher's Reagent)
22(13)
2.2.1 Analysis of Secondary Alcohols
23(4)
2.2.2 Analysis of Secondary Diols and Polyols
27(4)
2.2.3 Analysis of Primary Alcohols
31(1)
2.2.4 Analysis of Tertiary Alcohols
32(1)
2.2.5 Analysis of Secondary Amines
32(2)
2.2.6 Analysis of Primary Amines
34(1)
2.2.7 Use as a Chiral Solvating Agent
34(1)
2.2.8 Preparation of MTPA Derivatives
34(1)
2.3 α-Methoxy-α-Trifluoromethylphenylacetic Thioacid
35(1)
2.4 α-Methoxyphenylacetic Acid
35(12)
2.4.1 Analysis of Secondary Alcohols
36(2)
2.4.1.1 Variable Temperature Method for Assigning Absolute Stereochemistry
38(1)
2.4.1.2 Barium(II) Method for Assigning Absolute Stereochemistry
39(1)
2.4.2 Analysis of Diols
39(2)
2.4.3 Analysis of 1,2,3-Primary, Secondary, Secondary-Triols
41(1)
2.4.4 Analysis of Primary Alcohols
41(1)
2.4.5 Analysis of Amines
41(2)
2.4.5.1 Barium(II) Method for Assigning Absolute Stereochemistry
43(1)
2.4.6 Analysis of Amino Alcohols
44(1)
2.4.7 Analysis of Sulfoxides
44(1)
2.4.8 Polymer Bound CDAs: The "Mix and Shake" Method
45(2)
2.5 Mandelic Acid (2-Hydroxy-2-Phenylacetic Acid)
47(2)
2.6 O-Acetyl Mandelic Acid (2-Acetoxy-2-Phenylacetic Acid)
49(2)
2.7 Other O-Derivatized Mandelic Acids
51(1)
2.8 2-Phenylpropionic Acid
52(1)
2.9 2-Phenylselenopropionic Acid
52(1)
2.10 2-Methoxy-2-Phenylpent-3-ynoic Acid
52(1)
2.11 3-Phenylbutanoic Acid/2-Phenylbutanoic Acid
53(1)
2.12 α-Cyano-α-Fluorophenylacetic Acid/α-Cyano-α-Fluoronaphthylacetic Acid/α-Cyano-α-Fluoro-p-Tolylacetic Acid
54(2)
2.13 N-Boc Phenylglycine (BPG)
56(1)
2.14 1,5-Difuoro-2,4-Dinitrobenzene and Derivatives
57(2)
2.14.1 N-(5-Fluoro-2,4-Dinitrophenyl)-1-Phenylethylamide
59(1)
2.15 2-Fluoro-2-Phenylacetic Acid, 2-Fluoro-2-(1-Naphthyl) Propionic Acid, and 2-Fluoro-2-(2-Naphthyl)Propionic Acid
59(2)
2.16 α-Methoxy-α-(1-Naphthyl)Acetic Acid/α-Methoxy-α-(2-Naphthyl)Acetic Acid
61(1)
2.17 2-tert-Butoxy-2-(2-Naphthyl)Acetic Acid (2-NTBA)
62(1)
2.18 (-)-(R)-(2-Naphthyloxy)Phenylacetic Acid
63(1)
2.19 α-Methoxy-α-Trifluoromethyl-1-Naphthylacetic Acid (MTN(1)A)
63(1)
2.20 Naproxen
64(1)
2.21 2-Methoxy-2-(1-Naphthyl)Propionic Acid (MαNP)
65(5)
2.22 O-Aryl Lactic Acids
70(2)
2.23 α-(2-Anthryl)-α-Methoxyacetic Acid (2-AMA)/α-(9-Anthryl)-α-Methoxyacetic Acid (9-AMA)
72(3)
2.24 Summary
75(4)
2.24.1 Analysis of Primary Alcohols
76(1)
2.24.2 Analysis of Secondary Alcohols
76(1)
2.24.3 Analysis of Tertiary Alcohols
77(1)
2.24.4 Analysis of Primary Amines
77(1)
2.24.5 Analysis of Secondary Amines
78(1)
2.24.6 Analysis of Secondary Thiols
78(1)
3 Other Carboxylic Acid-Based Reagents
79(22)
3.1 Camphanic Acid
79(2)
3.2 Menthoxyacetic Acid
81(1)
3.3 Tetra-tert-Butyltrioxabicyclo[ 3.3.1]Nonadienedicarboxylic Acid
82(1)
3.4 Di-O-Benzoyl Tartaric Acid/Di-O-p-Toluoyl Tartaric Acid
82(3)
3.5 2-(2,3-Anthracenedicarboximido)Cyclohexane Carboxylic Acid
85(2)
3.6 3β-Acetoxy-Δ5-Etiocholenic Acid
87(1)
3.7 1-Methoxy-2,3-Dihydro-1H-Cyclopenta[ a]Naphthalene-1-Carboxylic Acid
88(1)
3.8 1-Fluoroindan-1-Carboxylic Acid
88(1)
3.9 (-)-(R)-2-(2,3,4,5,6-Pentafluorophenoxy)-2-(Phenyl-d5)Acetic Acid
89(1)
3.10 2,2-Diphenyl- and 2,2-Di-2-Naphthalen-2-yl-[ 1,3]Dioxolane-4, 5-Dicarboxylic Acid
90(1)
3.11 Tetrahydro-1,4-Epoxynaphthalene-1-Carboxylic Acid
90(1)
3.12 2-tert-Butyl-2-Methyl-1,3-Benzodioxole-4-Carboxylic Acid
91(1)
3.13 Benzo[ de]Isoquinoline 1,3-Dione Amino Acids
92(1)
3.14 Amino Acids and Derivatives
92(4)
3.14.1 Fmoc-Tryptophan(Boc)-OH
92(1)
3.14.2 Phosphonomethyl-L-Proline
93(1)
3.14.3 Phenylalanine Methyl Ester and Phenylalanine
93(1)
3.14.4 Proline
94(1)
3.14.5 N-(2-Nitrophenyl)proline
95(1)
3.14.6 N-Arylcarbonylpseudoprolines
95(1)
3.15 2-Methylbutyric Acid
96(1)
3.16 Atropisomeric Chiral Carboxylic Acids
96(5)
3.16.1 2'-Methoxy-1,1'-Binaphthyl-2-Carboxylic Acid
96(1)
3.16.2 2'-Methoxy-1,1'-Binaphthalene-8-Carboxylic Acid
97(1)
3.16.3 2-(2'-Methoxy-1'-naphthyl)-3,5-dichlorobenzoic Acid
98(3)
4 Hydroxyl- and Thiol-Containing Reagents
101(40)
4.1 2,2,2-Trifluorophenylethanol/2,2,2-Trifluoro-1-(9-Anthryl)Ethanol
101(14)
4.1.1 Analysis of Sulfoxides
102(1)
4.1.2 Analysis of Sulfinamides, Sulfinates, Sulfites, and Thiosulfinates
103(1)
4.1.3 Analysis of Lactones
103(2)
4.1.4 Analysis of Lactams
105(1)
4.1.5 Analysis of Epoxides and Oxaziridines
106(1)
4.1.6 Analysis of N,N'-Dialkylarylamine Oxides
106(1)
4.1.7 Analysis of Amino Acid Derivatives
107(1)
4.1.8 Analysis of Imines
107(1)
4.1.9 Analysis of Allenes
108(1)
4.1.10 Analysis of Other Compounds
108(5)
4.1.11 Use of Lanthanide Chelates with TFPE and TFAE
113(1)
4.1.12 Use as Chiral Derivatizing Agents
114(1)
4.2 Other Anthryl-Based Reagents
115(4)
4.2.1 Analogs of TFAE
115(3)
4.2.2 Ethyl-2-(9-Anthryl)-2-Hydroxyacetate (9-AHA)
118(1)
4.2.3 2-(2,3-Anthracenedicarboximido)-1-Cyclohexanol
119(1)
4.3 1-Phenylethanol
119(1)
4.4 2-Methoxy-2-Phenylethanol
120(1)
4.5 Methyl Mandelate
120(1)
4.6 Mandelonitrile
121(1)
4.7 Ethyl Mandelate
122(1)
4.8 Aminoindanols
122(1)
4.9 Menthol
123(1)
4.10 trans-Bis(Hydroxydiphenylmemyl)-2,2-Dimethyl-1,3-Dioxacyclopentane
124(1)
4.11 (S)-Ethyl Lactate
124(1)
4.12 Assignment of Absolute Configuration Using Glycosidation Shifts
125(6)
4.12.1 Analysis of Di- and Polysaccharides
128(1)
4.12.2 β-d- and β-l-Fucofuranoside
129(2)
4.13 2-Butanol and 2-Octanol
131(1)
4.14 Atropisomeric Alcohols
132(5)
4.14.1 2,2'-Dihydroxy-1,1'-Binaphthalene
132(4)
4.14.2 (S)-3,3'-Dibromo-1,1'-Bi-2-Naphthol
136(1)
4.14.3 4,4',6,6'-Tetrachloro-2,2'-bis(hydroxydiphenylmethyl) biphenyl
137(1)
4.15 Diol and Dithiol Reagents
137(4)
4.15.1 Butane-2,3-Diol and Butane-2,3-Thiol
137(1)
4.15.2 Epigallocategin-3-O-Gallate
138(3)
5 Amine-Based Reagents
141(30)
5.1 Primary Amines
141(13)
5.1.1 1-Phenylethylamine/1-(1-Naphthyl)ethylamine/1-(2-Naphthyl)ethylamine/1-(9-Anthryl) ethylamine (AEA)
141(6)
5.1.2 N,N,4-Trimemyl-2-{[ 1-phenylethyl]amino} (l-naphthyl)methyl]amine
147(1)
5.1.3 Fluorinated Aryl Amines
147(1)
5.1.4 (1S,2S)-1-Phenyl-2-amino-3-methoxy-1-propanol
147(1)
5.1.5 Phenylglycinol
148(1)
5.1.6 5-Amino-4-aryl-2,2-dimethyl-1,3-dioxans
149(1)
5.1.7 Amino Acids
149(1)
5.1.7.1 Peptides
149(1)
5.1.7.2 Phenylglycine Methyl Ester/Phenylglycine Dimethylamide
150(2)
5.1.8 1-Methoxy-2-Aminopropane
152(1)
5.1.9 (S,S)-1,2-[ (9,10-Dihydro-9,10-Ethanoanthracen-11-yl)methyl] dipyrrolidine/(R)-N-(((12R)-9,10-Dihydro-9,10-Ethanoanthracen-12-yl)methyl)-1-Phenylethan-1-Amine
153(1)
5.1.10 (+)-Dihydroabietylamine Derivatives
153(1)
5.2 Secondary Amines
154(4)
5.2.1 Ephedrine
154(1)
5.2.2 (+)-(R)-N-Benzyl-α-Methylbenzylamine
154(1)
5.2.3 2-Methyl Piperidine
155(1)
5.2.4 (N-Methyl)-α-Isoparteinium Cation
156(1)
5.2.5 (S)-2-(Methoxymethyl)pyrrolidine
156(1)
5.2.6 (S)-Triazine Receptor
157(1)
5.3 Tertiary Amines
158(1)
5.3.1 Derivatives of Troger's Base
158(1)
5.4 Diamine Reagents
159(4)
5.4.1 1,2-Diamino-1,2-Diphenylethane
159(1)
5.4.2 N,N'-Substituted 1,2-Diammo-1,2-Diphenylethane
160(1)
5.4.3 Derivatives of trans-1,2-Diaminocyclohexane
161(1)
5.4.4 cis-1,3-Diamino-trans-4-Fluorocyclopentane
162(1)
5.5 Databases Using Amine CSAs
163(8)
5.5.1 N,α-Dimethylbenzylamine
163(3)
5.5.2 bis-1,3-Methylbenzylamine-2-Methylpropane
166(3)
5.5.3 (R)-α-Methoxy-α-Trifluoromethylphenylacetic Acid/BMBA-pMe
169(2)
6 Miscellaneous CDAs, CSAs, and Other Methods of Chiral Analysis
171(72)
6.1 Amides
172(6)
6.1.1 N-(3,5-Dinitrobenzoyl)-1-Phenylethylamine/N-(3,5-Dinitrobenzoyl)-1-(1-Naphmyl)ethylamine
172(2)
6.1.2 N-((S)-1-(3,5-bis(Trifluoromethyl)phenyl)ethyl)-3, 5-Dinitrobenzamide
174(1)
6.1.3 N-(3,5-Dinitrobenzoyl)-l-Leucine
175(1)
6.1.4 N-(3,5-Dimtrobenzoyl)-4-Amino-3-Methyl-1,2,3,4-Tetrahydrophenanthrene (Whelk-O-1)
176(1)
6.1.5 N-1-(1-Naphthyl)ethyltrifluoroacetamide
177(1)
6.1.6 exo-N-[ (1R,2R,4R)-1,7,7-Trimethylbicyclo[ 2.2.1]heptan-2-yl) benzamides
178(1)
6.2 Lactams and Lactam-Like Compounds
178(6)
6.2.1 (S)-1-Benzyl-6-Methylpiperazine-2,5-Dione
180(1)
6.2.2 (S)-1-Isopropyl-6-(4-Nitrobenzyl)-Piperazine-2,5-Dione
181(1)
6.2.3 2-Oxazolidinones
181(2)
6.2.4 5-Methyl-5-Phenylpyrroline N-Oxide
183(1)
6.3 Aldehydes
184(4)
6.3.1 2-Hydroxy-2'-Nitrobenzoate-3-Aldehyde-1,1'-Binaphthalene
184(1)
6.3.2 (-)-Myrtenal
185(1)
6.3.3 Lactate-Derived Chiral Aldehyde
185(1)
6.3.4 (S)-Citronellal
186(1)
6.3.5 2-Hydroxy-2'-Substituted-3-Aldehyde-1,1'-Binaphthalene
186(1)
6.3.6 Helicin (Salicylaldehyde β-d-Glucoside)
186(1)
6.3.7 2'-Methoxy-1,1'-Binaphthalene-8-Carbaldehyde
187(1)
6.4 Ketones
188(1)
6.4.1 l-Menthone
188(1)
6.5 Anhydrides
189(1)
6.5.1 (S)-(+)-2-Methylbutyric Anhydride
189(1)
6.5.2 (1-Naphthyl)(trifluoromethyl) O-Carboxy-Anhydride
189(1)
6.6 Carbonate With (2,6-Dichloro-4-Methoxyphenyl) and (2,4-Dichlorophenyl) Groups
190(1)
6.7 2,2-Dimethoxypropane
190(2)
6.8 Isocyanates and Isothiocyanates
192(3)
6.8.1 1-Phenylethyl Isocyanate
192(1)
6.8.2 1-(1-Naphthyl)ethyl Isocyanate
193(1)
6.8.3 α-Methoxy-α-(Trifluoromethyl)benzyl Isocyanate
194(1)
6.8.4 Phenylethyl Isothiocyanate/Naphthylethyl Isothiocyanate
195(1)
6.8.5 (1S,2S)-N-[ (2-Isothiocyanato)cyclohexyl]trifluoromethane Sulfonamide
195(1)
6.9 Thioureas
195(3)
6.10 Sulfur-Containing Reagents
198(6)
6.10.1 Camphor-10-Sulfonic Acid
198(4)
6.10.2 (p-Tolyl) (2-(1-Hydroxy-1-Trifluoromethyl-2,2,2-Fluoroethyl) phenyl)sulfoxide
202(1)
6.10.3 Disulfonimide Derivative of 2,2'-Dihydroxy-1,1'-Binaphthalene
202(1)
6.10.4 (N-Methylphenylsulfoximidoyl)methyl Lithium
203(1)
6.11 Reagents That React at a Chlorine Atom
204(3)
6.11.1 5(R)-Methyl-1-(Chloromethyl)-2-Pyrrolidinone
204(1)
6.11.2 Menthyl Chloroformate
204(1)
6.11.3 2'-Methoxy-1,1'-Binaphthalene-2-Carbohydroxymoyl Chloride
205(2)
6.12 Polyfunctional Reagents
207(16)
6.12.1 Quinine
207(1)
6.12.2 Quinine Derivatives
208(2)
6.12.3 Cinchonidine
210(2)
6.12.4 Quinidine
212(1)
6.12.5 Quinidine Derivatives
213(1)
6.12.6 (S)-2-(5-Bromo-2-Dimemylaminobenzylamino)-1,1,3-Triphenylpropan-1-ol
214(1)
6.12.7 2[ (2R)-2-Hydroxy-3-[ [ (1S)-1-Phenylethyl]amino] propyl]isoindoline-1,3-Dione
215(1)
6.12.8 (S,S)-[ (2-Benzyloxynaphthalen-1-yl)phenylmethyl] (1-Phenylethyl)amine
215(1)
6.12.9 2-Amino-2-Phenyl-1-Ethanol
216(1)
6.12.10 (S)-Diphenyl(pyrrolidin-2-yl)methanol
216(1)
6.12.11 2'-Amino-1,1'-Binaphthalene-2-ol
216(1)
6.12.12 Urea Derivative of trans-1,2-Diaminocyclohexane
217(1)
6.12.13 Poly-N-Substituted Glycines
217(1)
6.12.14 Proline Derivative
218(1)
6.12.15 1-(1-Naphthyl)ethyl Urea Derivatives of Amino Acids
218(1)
6.12.16 (S)-1-[ 1H-Benzo(d)(1,2,3)triazol-1-yl]-2-[ 6-Methoxynaphthalen-2-yl-Propan-1-one]
219(1)
6.12.17 Benzene Tricarboxamide-Based Hydrogelator
220(1)
6.12.18 (1S,2S)-N,N'-Dihydroxy-N,N'-bis(diphenylacetyl)-1,2-Cyclohexanediamine
220(1)
6.12.19 1-Formyl-N-(2-Methoxy-1,2-Diphenylethyl)piperidine-2-Carboxamide
221(1)
6.12.20 2,2'-Dihydroxybenzophenone
222(1)
6.12.21 Diisopropyl-l-Tartrate
222(1)
6.13 Micelles
223(3)
6.14 Ionic Liquids
226(3)
6.15 Guanosinemonophosphate (G-Tetrads)
229(1)
6.16 Achiral Reagents for Chiral Analysis: N21,N23-Dibenzyl-5,10,15,20-Tetrakis(3,5-Di-tert-Butyl-4-Oxocyclohexa-2,5-Dienylidene) Porphyrinogen
229(1)
6.17 Assigning Absolute Configuration Using Kinetic Resolution Catalysts
230(3)
6.18 Chiral Analysis Through Isotope Labeling
233(1)
6.19 Self-Induced Diastereomeric Anisochronism: Self-Differentiation of Chiral Compounds
234(2)
6.20 High-Throughput Methods with Chiral NMR Reagents
236(1)
6.20.1 Analysis of Enantiopurity
236(1)
6.20.2 Selection of the Optimal CSA
237(1)
6.21 HPLC-NMR
237(1)
6.22 Database Methods
238(5)
7 Reagents Incorporating Phosphorus, Selenium, Boron, and Silicon Atoms
243(54)
7.1 Phosphorus-Containing Reagents
243(39)
7.1.1 Phosphorus(V) Reagents
244(1)
7.1.1.1 Phosphinic Amides
244(1)
7.1.1.2 Thiophosphoramides
245(1)
7.1.1.3 Phosphinothioic Acids
245(4)
7.1.1.4 O-Ethyl Phenylphosphonothioic Acid
249(1)
7.1.1.5 cis-2-Chloro-3,4-Dimethyl-5-Phenyl-1,3,2-Oxazophospholidin-2-One
249(2)
7.1.1.6 2-Chloro-5,5-Dimethyl-4-Phenyl-1,3,2-Dioxaphosphorinane-2-Oxide
251(1)
7.1.1.7 2-Chloro-3-Phenyl-1,3,2-Diazaphosphabicyclo[ 3.3.0] octane-2-Oxide
252(1)
7.1.1.8 Methyl Phosphonic Dichloride/Methyl Phosphonothioic Dichloride
253(1)
7.1.1.9 1,1'-Binaphthyl-2,2'-Diylphosphoric Acid
253(2)
7.1.1.10 1,1'-Binaphthyl-2,2'-Diylphosphoroselenoyl Chloride
255(2)
7.1.2 Phosphorus(III) Reagents
257(1)
7.1.2.1 Diazaphospholidines
257(2)
7.1.2.2 1,3,2-Dioxaphospholanes
259(3)
7.1.2.3 (1R,2S,5R)-Menthyloxydiphenylphosphine
262(1)
7.1.2.4 Phosphorus Trichloride
263(1)
7.1.2.5 [ 5] HELOL Phosphite
263(1)
7.1.3 Ionic Reagents
264(1)
7.1.3.1 TRISPHAT/BINPHAT
264(14)
7.1.3.2 Phosphorus Zwitterion
278(1)
7.1.4 Configurational Analysis of Phosphates: Oxygen Isotope Methods
278(4)
7.1.5 Summary
282(1)
7.2 Selenium-Containing Reagents
282(3)
7.2.1 4-Methyl-5-Phenyloxazolidine-2-Selone
282(1)
7.2.2 bis-Selenourea
283(1)
7.2.3 (S)-3-Phenyl-2-(Selenophenyl)propan-1-ol
284(1)
7.2.4 (R)-1-(Phenylselenyl)butan-2-Amine
284(1)
7.2.5 2-Phenylselenopropionic Acid
285(1)
7.3 Boron-Containing Reagents
285(9)
7.3.1 2-Formylphenylboronic Acid
286(5)
7.3.2 2-(1-Methoxyethyl)phenylboronic Acid
291(1)
7.3.3 1,3-Phenyldiboronic Acid
292(1)
7.3.4 Trialkoxyboranes
293(1)
7.3.5 Chiral Diborate
293(1)
7.4 Silicon-Containing Reagents
294(3)
7.4.1 Monochlorosilanes
294(3)
8 Macrocyclic and Receptor Compounds as Chiral NMR Differentiating Agents
297(78)
8.1 Cyclodextrins
298(24)
8.1.1 Introduction
298(1)
8.1.2 Native Cyclodextrins
299(4)
8.1.2.1 Lanthanide Coupling to Native Cyclodextrins
303(2)
8.1.3 Neutral Cyclodextrin Derivatives
305(1)
8.1.3.1 Hexakis(2,3,6-Tri-O-Methyl)-α-Cyclodextrin (TM-α-CD) / Heptakis(2,3,6-Tri-O-Methyl)-β-Cyclodextrin (TM-β-CD)
305(2)
8.1.3.2 Heptakis[ 2,3-Di-O-Methyl-6-O-(l-Valine-tert-Butylamide-Na-ylcarbonylmethyl)]-β-Cyclodextrin
307(1)
8.1.3.3 Heptakis(2-O-Methyl-3-O-Acetyl-6-Hydroxy) β-Cyclodextrin
307(2)
8.1.3.4 Benzoylated and Benzylated Cyclodextrins
309(1)
8.1.3.5 Carbamoylated Cyclodextrins
309(1)
8.1.3.6 Octakis(3-O-Butanoyl-2,6-Di-O-Pentyl)-γ-Cyclodextrin
310(1)
8.1.3.7 Hydroxyethyl (HE-CD) and Hydroxypropyl (HP-CD) Cyclodextrins
311(1)
8.1.3.8 Heptakis[ 2,3-Di-O-Acetyl-6-O-tert-Butyldimethylsilyl]-β-Cyclodextrin
312(1)
8.1.4 Anionic Cyclodextrin Derivatives
312(1)
8.1.4.1 Carboxymethylated Cyclodextrins
313(3)
8.1.4.2 Octakis(2,3-Di-O-Methyl-6-O-Carboxymethyl)-γ-Cyclodextrin
316(1)
8.1.4.3 Heptakis(6-Carboxymethylthio-6-Deoxy)-β-Cyclodextrin (6-CMT-β-CD)
317(1)
8.1.4.4 Sulfobutylether Cyclodextrin (SBE-CD) and Sulfopropylether Cyclodextrin (SPE-CD)
317(1)
8.1.4.5 Phosphated Cyclodextrins (P-CDs)
318(1)
8.1.4.6 Sulfated Cyclodextrins (S-CDs)
319(1)
8.1.5 Cationic Cyclodextrin Derivatives
320(1)
8.1.5.1 Amino-Substituted Cyclodextrins
320(1)
8.1.5.2 Diaminomethylated-α-Cyclodextrin
320(1)
8.1.5.3 O-(2-Hydroxypropyl)trimethylammonium Cyclodextrin (TMA-CD), O-(2-Hydroxypropyl)triethylammonium Cyclodextrin (TEA-CD), and O-(2-Hydroxypropyl)tri-n-Propylammonium Cyclodextrin (TPA-CD)
321(1)
8.1.6 Summary
322(1)
8.2 Crown Ethers
322(23)
8.2.1 Introduction
322(3)
8.2.2 (18-Crown-6)-2,3,11,12-Tetracarboxylic Acid
325(5)
8.2.3 (18-Crown-6) with 1,2:5,6-Isopropylidine-d-Mannitol Unit
330(1)
8.2.4 Crown Ether Incorporating a 2,2'-Dihydroxy-1,1'-Binaphthalene Unit
331(1)
8.2.5 Glycoside-Derived Crown Ethers
331(2)
8.2.6 Crown Ethers Derived from Maleopimaric Acid
333(1)
8.2.7 P-Stereogenic Diphosphacrowns
333(1)
8.2.8 Aza-Oxo Crown Ether-Like Compounds
334(2)
8.2.9 Aza-Containing Macrocycles
336(9)
8.3 Calixarenes and Resorcinarenes
345(15)
8.3.1 Introduction
345(1)
8.3.2 Resorcinarenes
346(5)
8.3.3 Calixarenes
351(8)
8.3.4 Summary
359(1)
8.4 Receptor Compounds
360(6)
8.4.1 For Carboxylic Acids
360(5)
8.4.2 For Carbohydrates
365(1)
8.5 Cyclosophoraoses: Cyclic-β-d-Glucans
366(1)
8.6 Cryptophane Receptor
367(2)
8.7 1,1'-Binaphthalene-Based Macrocycles and Receptors
369(6)
9 Chiral Differentiation with Metal-Based Reagents
375(66)
9.1 Introduction
375(1)
9.2 Lanthanide Complexes
376(29)
9.2.1 Introduction
376(3)
9.2.2 Strategies to Compensate for Peak Broadening with Lanthanide Shift Reagents
379(1)
9.2.2.1 Use of Diamagnetic Lanthanide Shift Reagents
380(1)
9.2.2.2 Use of Samarium(III) Complexes
381(1)
9.2.2.3 13C NMR Spectra
381(1)
9.2.2.4 Use of Polar Solvents
382(2)
9.2.2.5 Raising the Temperature of the Sample
384(1)
9.2.2.6 Signal Processing Techniques
384(1)
9.2.3 Catalytic Properties of Lanthanide Ions
384(1)
9.2.4 Applications of Lanthanide Shift Reagents
385(11)
9.2.5 Assignment of Absolute Stereochemistry
396(1)
9.2.6 Pr(III) Complex of Tetraphenylimidodiphosphinate -- Pr(tpip)3
397(1)
9.2.7 Bimetallic Lanthanide--Silver Reagents
398(3)
9.2.7.1 Analysis of Organic Salts
401(1)
9.2.8 Aqueous Lanthanide Shift Reagents
401(1)
9.2.8.1 Complexes of Propylenediamine Tetraacetate
402(1)
9.2.8.2 Complexes of N,N,N',N'-Tetrakis(pyridylmethyl) propylene Diamine
403(1)
9.2.8.3 Complexes with Other Ligands
404(1)
9.2.8.4 Complexes with Tetraazocyclodecane and Tetraazocyclododecane Macrocyclic Ligands
404(1)
9.3 Transition Metal Complexes
405(36)
9.3.1 Palladium Complexes
405(1)
9.3.1.1 Bridged Dimers with Amine Ligands
405(7)
9.3.1.2 Miscellaneous Palladium Complexes
412(2)
9.3.2 Platinum Complexes
414(1)
9.3.2.1 Complexes with Amine Ligands
414(2)
9.3.2.2 C,P-Cycloplatinated Phosphite Complex
416(1)
9.3.2.3 Complexes with Diphosphine Ligands
416(2)
9.3.3 Rhodium Complexes
418(1)
9.3.3.1 Rhodium Dimer [ Rh2(MTPA)4]
418(7)
9.3.3.2 Miscellaneous Rhodium Complexes
425(3)
9.3.4 Cobalt Complexes
428(1)
9.3.4.1 Complexes with Porphyrin Ligands
428(1)
9.3.4.2 Analysis of Geometrical Isomers
429(2)
9.3.4.3 Analysis of DNA
431(1)
9.3.5 Zinc Complexes
431(2)
9.3.6 Ruthenium Complexes
433(1)
9.3.7 Silver Complexes
434(1)
9.3.8 Tin Complexes
435(1)
9.3.9 Titanium Complexes
435(1)
9.3.10 Aluminum Complexes
436(2)
9.3.11 Gold Nanoparticles
438(1)
9.3.12 Iron Complexes
438(1)
9.3.13 Tellurium-Iron Complex
439(2)
10 Chiral NMR Differentiation Using Ordered Systems
441(42)
10.1 Introduction
441(1)
10.2 Chiral Liquid Crystals and Gels
441(36)
10.2.1 Introduction
441(2)
10.2.2 Practical Aspects of Using Chiral Aligning Media
443(2)
10.2.3 Early Studies with Liquid Crystals
445(1)
10.2.4 Aligning Media
445(5)
10.2.5 Enantiopurity Analysis of 2H-Labeled Compounds
450(8)
10.2.6 Natural Abundance 2H NMR Analysis: NMR Methods
458(1)
10.2.7 Applications of Natural Abundance 2H NMR Spectroscopy
459(2)
10.2.8 13C NMR Applications
461(2)
10.2.9 1H and 13C NMR Methods
463(3)
10.2.10 19F NMR Analysis
466(1)
10.2.11 Analysis Using Other Nuclei
466(1)
10.2.12 Analysis of Prochiral Compounds
467(3)
10.2.13 Analysis of Prochiral Methylene Groups of Fatty Acids: 2H/1H Positions and Ratios
470(2)
10.2.14 Assignment of Absolute Configuration
472(1)
10.2.14.1 Residual Dipolar Couplings
472(3)
10.2.14.2 Residual Chemical Shift Anisotropy
475(2)
10.2.14.3 Residual Quadrupolar Couplings
477(1)
10.3 Polymers
477(1)
10.4 Solid-State NMR Spectroscopy
478(5)
10.4.1 Analysis of Polymer-Bound Compounds
481(2)
11 Closing Comments and Future Prospects
483(8)
11.1 Selection of CSAs and CDAs
483(2)
11.2 Future Prospects
485(6)
11.2.1 New Chiral Reagents
485(1)
11.2.2 Chiral NMR Analysis Using Only Instrumental Methods
485(6)
References 491(74)
Index 565
THOMAS J. WENZEL, PHD, is the Charles A. Dana Professor of Chemistry at Bates College in Lewiston, Maine. He has served terms as chair of the Science Division, Chemistry Department, Biochemistry Program and the interdisciplinary Environmental Studies Program.