Atnaujinkite slapukų nuostatas

El. knyga: Digital Modeling of Material Appearance

(INRIA Rhōne-Alpes, Montbonnot, France), (Yale University, New Haven, CT, U.S.A.), (Yale University, New Haven, CT, U.S.A.)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Computer graphics systems are capable of generating stunningly realistic images of objects that have never physically existed. In order for computers to create these accurately detailed images, digital models of appearance must include robust data to give viewers a credible visual impression of the depicted materials. In particular, digital models demonstrating the nuances of how materials interact with light are essential to this capability.

Digital Modeling of Material Appearance is the first comprehensive work on the digital modeling of material appearance: it explains how models from physics and engineering are combined with keen observation skills for use in computer graphics rendering.

Written by the foremost experts in appearance modeling and rendering, this book is for practitioners who want a general framework for understanding material modeling tools, and also for researchers pursuing the development of new modeling techniques. The text is not a "how to" guide for a particular software system. Instead, it provides a thorough discussion of foundations and detailed coverage of key advances.

Practitioners and researchers in applications such as architecture, theater, product development, cultural heritage documentation, visual simulation and training, as well as traditional digital application areas such as feature film, television, and computer games, will benefit from this much needed resource.

ABOUT THE AUTHORSJulie Dorsey and Holly Rushmeier are professors in the Computer Science Department at Yale University and co-directors of the Yale Computer Graphics Group. Franēois Sillion is a senior researcher with INRIA (Institut National de Recherche en Informatique et Automatique), and director of its Grenoble Rhōne-Alpes research center.

Daugiau informacijos

Creating reality from illusion-- this is the book that shows how it's done!
Acknowledgments ix
Introduction
1(4)
Background
5(22)
Light
7(5)
Human Perception and Judgments
12(9)
Luminance and Brightness
12(3)
Color
15(3)
Directional Effects
18(2)
Textures and Patterns
20(1)
Image Synthesis
21(3)
Shape
22(1)
Incident Light
23(1)
Material
24(1)
Summary and Further Reading
24(3)
Observation and Classification
27(20)
A Tour of Materials
28(16)
Examples of Modeling Classes of Materials
44(3)
Mathematical Terms
47(14)
Energy as a Function of Time, Position, and Direction
48(6)
Position
49(1)
Direction
50(4)
Radiance
54(1)
Reflectance and BRDF
55(6)
Distribution Functions
56(2)
Energy Conservation and BRDF
58(1)
Reciprocity and BRDF
59(2)
General Material Models
61(62)
Reflection and Refraction from a Smooth Surface
62(7)
Empirical Models
69(14)
Lambertian Reflectance
69(1)
Phong Reflectance
70(6)
Ward Reflectance
76(3)
Lafortune Reflectance
79(3)
Ashikhmin--Shirley Anisotropic Phong Reflectance
82(1)
Analytical First Principles Models
83(10)
Microfacet Distributions
84(2)
Models Based on Geometric Optics
86(2)
Blinn and Cook--Torrance Reflectance
88(1)
Oren--Nayar Reflectance
89(3)
Models Based on Wave Optics
92(1)
Simulation from First Principles
93(2)
Spectral Effects
95(2)
Dispersion
95(1)
Thin Film Interference
96(1)
Diffraction from Regular Structures
97(1)
Other Effects
97(4)
Polarization
98(2)
Phosphorescence and Fluorescence
100(1)
Scattering in Volumes
101(19)
Radiance
103(10)
Measured Properties
113(1)
Solid Volumetric Media: Subsurface Scattering
114(6)
Spatial Variations
120(3)
Specialized Material Models
123(38)
Natural Organic Materials
124(20)
Humans and Other Mammals
124(11)
Birds, Reptiles, Amphibians, Fish, and Insects
135(3)
Plants
138(6)
Natural: Inorganic
144(3)
Porous Materials
145(1)
Water in Other Materials: Wet/Dry Appearance
145(2)
Snow
147(1)
Materials in Manufactured Goods
147(14)
Fabrics
147(3)
Paints, Coatings, and Artistic Media
150(7)
Gems
157(4)
Measurement
161(32)
Traditional Measurement
162(7)
Gonioreflectometers
163(3)
Nephelometers
166(1)
Industrial Measurement Devices
166(3)
Image-Based BRDF Measurements of Sample Materials
169(5)
Cameras as Sensors
169(2)
Measuring Prepared Homogeneous Material Samples
171(3)
Measurement of Existing Objects
174(8)
Large Objects and Buildings
181(1)
Simultaneous Shape and Reflectance Capture
182(1)
Small-Scale Geometric Structures
183(5)
Normal and Bump Maps
183(2)
Bidirectional Texture Functions
185(3)
Alternative Representations
188(1)
Subsurface Scattering and Volumetric Media
189(2)
Additional Dimensions
191(2)
Aging and Weathering
193(34)
Weathering Taxonomy
193(14)
Chemical
194(5)
Mechanical
199(4)
Biological
203(3)
Combined Processes
206(1)
Simulation of Weathering Effects
207(13)
Patination
207(3)
Impacts
210(1)
Scratches
211(1)
Cracking and Peeling
212(3)
Flow and Deposition
215(2)
Dust Accumulation
217(1)
Weathering Systems
218(2)
Replication of Aged Appearance
220(2)
Manual Application
220(1)
Accessibility Shading/Ambient Occlusion
221(1)
Capture, Analysis, and Transfer of Effects
222(5)
Context-Aware Textures
222(3)
Appearance Manifolds
225(2)
Specifying and Encoding Appearance Descriptions
227(16)
Practical Techniques for Appearance Specification
227(8)
Visual Interfaces for Analytic Models
228(2)
3D Painting
230(2)
Textual and Programming Interfaces
232(2)
Composition from Basic Building Blocks
234(1)
Encoding Local Appearance Attributes
235(3)
Parameterized Models
236(1)
Tabular Data
236(1)
Basis Functions
237(1)
Association of Material and Shape
238(5)
Discussion of Surface Parameterization
238(1)
Representation of Light and View Dependence
239(4)
Rendering Appearance
243(34)
An Overview of Image Creation Techniques
243(8)
Object Projection Techniques
244(4)
Image Sampling Techniques
248(1)
Local and Global Calculations
249(2)
Simulating Global Illumination
251(13)
Monte Carlo Evaluation of the Rendering Equations
252(4)
Caching Mechanisms
256(6)
Finite Elements Methods
262(2)
Rendering Local Appearance
264(6)
Texture Mapping and Detail Management
265(1)
BRDF and BTF Sampling
266(1)
Subsurface Scattering and Participating Media
267(3)
Color and Tone
270(3)
Spectral Rendering
270(2)
Dynamic Range and Tone Mapping
272(1)
Precomputed Rendering Elements
273(4)
Bibliography 277(26)
Index 303