Atnaujinkite slapukų nuostatas

El. knyga: Diophantine m-tuples and Elliptic Curves

  • Formatas: EPUB+DRM
  • Serija: Developments in Mathematics 79
  • Išleidimo metai: 05-Jun-2024
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031567247
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Serija: Developments in Mathematics 79
  • Išleidimo metai: 05-Jun-2024
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031567247
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book provides an overview of the main results and problems concerning Diophantine m-tuples, i.e., sets of integers or rationals with the property that the product of any two of them is one less than a square, and their connections with elliptic curves. It presents the contributions of famous mathematicians of the past, like Diophantus, Fermat and Euler, as well as some recent results of the author and his collaborators.

The book presents fragments of the history of Diophantine m-tuples, emphasising the connections between Diophantine m-tuples and elliptic curves. It is shown how elliptic curves are used in solving some longstanding problems on Diophantine m-tuples, such as the existence of infinite families of rational Diophantine sextuples. On the other hand, rational Diophantine m-tuples are used to construct elliptic curves with interesting Mordell–Weil groups, including curves of record rank with agiven torsion group. The book contains concrete algorithms and advice on how to use the software package PARI/GP for solving computational problems.

This book is primarily intended for researchers and graduate students in Diophantine equations and elliptic curves. However, it can be of interest to other mathematicians interested in number theory and arithmetic geometry. The prerequisites are on the level of a standard first course in elementary number theory. Background in elliptic curves, Diophantine equations and Diophantine approximations is provided.

Recenzijos

The present book is a monograph on a very specialized topic in number theory, namely Diophantine m-tuples. this book is very complex, containing results from a very interesting and current research field. I think that this book deserved to be published by the Springer publishing house and I think it will be a benchmark for current research in number theory. (Diana Savin, Bulletin of the Transilvania University of Brasov, Vol. 4 (1), 2024)

Introduction.- Elliptic curves over the rationals.- Elliptic curves
induced by Diophantine triples.- Integer points on elliptic curves.- Sets
with the property D(n).
Andrej Dujella is a professor of mathematics at the University of Zagreb, Fellow of the Croatian Academy of Sciences and Arts and Doctor Honoris Causa of University of Debrecen. His research interests include Diophantine equations, elliptic curves, polynomial root separation, and applications of Diophantine approximation to cryptography.