Preface |
|
xiii | |
Acknowledgments |
|
xv | |
List of abbreviations |
|
xvii | |
List of symbols |
|
xix | |
List of figures |
|
xxiii | |
List of tables |
|
xxv | |
1 Introduction |
|
1 | (36) |
|
|
2 | (5) |
|
1.2 Stochastic representation and the = operator |
|
|
7 | (6) |
|
1.2.1 Definition of stochastic representation |
|
|
7 | (4) |
|
1.2.2 More properties on the = operator |
|
|
11 | (2) |
|
1.3 Beta and inverted beta distributions |
|
|
13 | (3) |
|
1.4 Some useful identities and integral formulae |
|
|
16 | (1) |
|
1.4.1 Partial-fraction expansion |
|
|
16 | (1) |
|
1.4.2 CambanisKeenerSimons integral formulae |
|
|
16 | (1) |
|
1.4.3 HermiteGenocchi integral formula |
|
|
17 | (1) |
|
1.5 The NewtonRaphson algorithm |
|
|
17 | (1) |
|
1.6 Likelihood in missing-data problems |
|
|
18 | (5) |
|
1.6.1 Missing-data mechanism |
|
|
18 | (1) |
|
1.6.2 The expectationmaximization (EM) algorithm |
|
|
19 | (3) |
|
1.6.3 The expectation/conditional maximization (ECM) algorithm |
|
|
22 | (1) |
|
1.6.4 The EM gradient algorithm |
|
|
22 | (1) |
|
1.7 Bayesian MDPs and inversion of Bayes' formula |
|
|
23 | (7) |
|
1.7.1 The data augmentation (DA) algorithm |
|
|
23 | (2) |
|
1.7.2 True nature of Bayesian MDP: inversion of Bayes' formula |
|
|
25 | (1) |
|
1.7.3 Explicit solution to the DA integral equation |
|
|
26 | (3) |
|
1.7.4 Sampling issues in Bayesian MDPs |
|
|
29 | (1) |
|
1.8 Basic statistical distributions |
|
|
30 | (7) |
|
1.8.1 Discrete distributions |
|
|
30 | (2) |
|
1.8.2 Continuous distributions |
|
|
32 | (5) |
2 Dirichlet distribution |
|
37 | (60) |
|
2.1 Definition and basic properties |
|
|
38 | (5) |
|
2.1.1 Density function and moments |
|
|
38 | (2) |
|
2.1.2 Stochastic representations and mode |
|
|
40 | (3) |
|
2.2 Marginal and conditional distributions |
|
|
43 | (2) |
|
2.3 Survival function and cumulative distribution function |
|
|
45 | (6) |
|
|
45 | (1) |
|
2.3.2 Cumulative distribution function |
|
|
46 | (5) |
|
2.4 Characteristic functions |
|
|
51 | (6) |
|
2.4.1 The characteristic function of u approximately = U(Tn) |
|
|
51 | (2) |
|
2.4.2 The characteristic function of v approximately = U(Vn) |
|
|
53 | (2) |
|
2.4.3 The characteristic function of a Dirichlet random vector |
|
|
55 | (2) |
|
2.5 Distribution for linear function of a Dirichlet random vector |
|
|
57 | (7) |
|
2.5.1 Density for linear function of v approximately = U(Vn) |
|
|
57 | (2) |
|
2.5.2 Density for linear function of u approximately = U(Tn) |
|
|
59 | (2) |
|
2.5.3 A unified approach to linear functions of variables and order statistics |
|
|
61 | (2) |
|
2.5.4 Cumulative distribution function for linear function of a Dirichlet random vector |
|
|
63 | (1) |
|
|
64 | (8) |
|
2.6.1 Mosimann's characterization |
|
|
64 | (1) |
|
2.6.2 Darroch and Ratcliff's characterization |
|
|
65 | (4) |
|
2.6.3 Characterization through neutrality |
|
|
69 | (1) |
|
2.6.4 Characterization through complete neutrality |
|
|
70 | (2) |
|
2.6.5 Characterization through global and local parameter independence |
|
|
72 | (1) |
|
2.7 MLEs of the Dirichlet parameters |
|
|
72 | (5) |
|
2.7.1 MLE via the Newton-Raphson algorithm |
|
|
72 | (4) |
|
2.7.2 MLE via the EM gradient algorithm |
|
|
76 | (1) |
|
2.7.3 Analyzing serum-protein data of Pekin ducklings |
|
|
76 | (1) |
|
2.8 Generalized method of moments estimation |
|
|
77 | (3) |
|
2.8.1 Method of moments estimation |
|
|
78 | (1) |
|
2.8.2 Generalized method of moments estimation |
|
|
79 | (1) |
|
2.9 Estimation based on linear models |
|
|
80 | (12) |
|
|
81 | (3) |
|
2.9.2 Estimation based on individual linear models |
|
|
84 | (3) |
|
2.9.3 Estimation based on the overall linear model |
|
|
87 | (5) |
|
2.10 Application in estimating ROC area |
|
|
92 | (5) |
|
|
92 | (1) |
|
|
92 | (2) |
|
2.10.3 Computing the posterior density of the ROC area |
|
|
94 | (1) |
|
2.10.4 Analyzing the mammogram data of breast cancer |
|
|
95 | (2) |
3 Grouped Dirichlet distribution |
|
97 | (44) |
|
3.1 Three motivating examples |
|
|
98 | (1) |
|
|
99 | (2) |
|
|
101 | (3) |
|
3.4 Marginal distributions |
|
|
104 | (4) |
|
3.5 Conditional distributions |
|
|
108 | (2) |
|
3.6 Extension to multiple partitions |
|
|
110 | (5) |
|
|
110 | (1) |
|
|
111 | (1) |
|
3.6.3 Marginal distributions |
|
|
112 | (1) |
|
3.6.4 Conditional distributions |
|
|
113 | (2) |
|
3.7 Statistical inferences: likelihood function with GDD form |
|
|
115 | (6) |
|
3.7.1 Large-sample likelihood inference |
|
|
116 | (2) |
|
3.7.2 Small-sample Bayesian inference |
|
|
118 | (1) |
|
3.7.3 Analyzing the cervical cancer data |
|
|
118 | (1) |
|
3.7.4 Analyzing the leprosy survey data |
|
|
119 | (2) |
|
3.8 Statistical inferences: likelihood function beyond GDD form |
|
|
121 | (13) |
|
3.8.1 Incomplete 2 x 2 contingency tables: the neurological complication data |
|
|
121 | (2) |
|
3.8.2 Incomplete r x c contingency tables |
|
|
123 | (9) |
|
3.8.3 Wheeze study in six cities |
|
|
132 | (1) |
|
|
133 | (1) |
|
3.9 Applications under nonignorable missing data mechanism |
|
|
134 | (7) |
|
3.9.1 Incomplete r x c tables: nonignorable missing mechanism |
|
|
134 | (3) |
|
3.9.2 Analyzing the crime survey data |
|
|
137 | (4) |
4 Nested Dirichlet distribution |
|
141 | (34) |
|
|
142 | (1) |
|
4.2 Two motivating examples |
|
|
142 | (2) |
|
4.3 Stochastic representation, mixed moments, and mode |
|
|
144 | (4) |
|
4.4 Marginal distributions |
|
|
148 | (2) |
|
4.5 Conditional distributions |
|
|
150 | (2) |
|
4.6 Connection with exact null distribution for sphericity test |
|
|
152 | (1) |
|
4.7 Large-sample likelihood inference |
|
|
153 | (6) |
|
4.7.1 Likelihood with NDD form |
|
|
154 | (1) |
|
4.7.2 Likelihood beyond NDD form |
|
|
155 | (1) |
|
4.7.3 Comparison with existing likelihood strategies |
|
|
156 | (3) |
|
4.8 Small-sample Bayesian inference |
|
|
159 | (3) |
|
4.8.1 Likelihood with NDD form |
|
|
159 | (1) |
|
4.8.2 Likelihood beyond NDD form |
|
|
159 | (1) |
|
4.8.3 Comparison with the existing Bayesian strategy |
|
|
160 | (2) |
|
|
162 | (10) |
|
4.9.1 Sample surveys with nonresponse: simulated data |
|
|
162 | (1) |
|
|
163 | (3) |
|
4.9.3 Competing-risks model: failure data for radio transmitter receivers |
|
|
166 | (3) |
|
4.9.4 Sample surveys: two data sets for death penalty attitude |
|
|
169 | (1) |
|
4.9.5 Bayesian analysis of the ultrasound rating data |
|
|
170 | (2) |
|
4.10 A brief historical review |
|
|
172 | (3) |
|
4.10.1 The neutrality principle |
|
|
172 | (2) |
|
4.10.2 The short memory property |
|
|
174 | (1) |
5 Inverted Dirichlet distribution |
|
175 | (24) |
|
5.1 Definition through the density function |
|
|
175 | (2) |
|
|
175 | (1) |
|
5.1.2 Several useful integral formulae |
|
|
176 | (1) |
|
5.1.3 The mixed moment and the mode |
|
|
177 | (1) |
|
5.2 Definition through stochastic representation |
|
|
177 | (1) |
|
5.3 Marginal and conditional distributions |
|
|
178 | (1) |
|
5.4 Cumulative distribution function and survival function |
|
|
179 | (4) |
|
5.4.1 Cumulative distribution function |
|
|
179 | (3) |
|
|
182 | (1) |
|
5.5 Characteristic function |
|
|
183 | (2) |
|
|
183 | (1) |
|
5.5.2 The confluent hypergeometric function of the second kind |
|
|
183 | (1) |
|
|
184 | (1) |
|
5.6 Distribution for linear function of inverted Dirichlet vector |
|
|
185 | (3) |
|
|
185 | (1) |
|
5.6.2 The distribution of the sum of independent gamma variates |
|
|
186 | (1) |
|
5.6.3 The case of two dimensions |
|
|
187 | (1) |
|
5.7 Connection with other multivariate distributions |
|
|
188 | (4) |
|
5.7.1 Connection with the multivariate t distribution |
|
|
188 | (2) |
|
5.7.2 Connection with the multivariate logistic distribution |
|
|
190 | (1) |
|
5.7.3 Connection with the multivariate Pareto distribution |
|
|
191 | (1) |
|
5.7.4 Connection with the multivariate Cook-Johnson distribution |
|
|
191 | (1) |
|
|
192 | (7) |
|
5.8.1 Bayesian analysis of variance in a linear model |
|
|
192 | (3) |
|
5.8.2 Confidence regions for variance ratios in a linear model with random effects |
|
|
195 | (4) |
6 Dirichlet-multinomial distribution |
|
199 | (28) |
|
6.1 Probability mass function |
|
|
199 | (4) |
|
|
199 | (1) |
|
6.1.2 Definition via a mixture representation |
|
|
200 | (1) |
|
6.1.3 Beta-binomial distribution |
|
|
201 | (2) |
|
6.2 Moments of the distribution |
|
|
203 | (2) |
|
6.3 Marginal and conditional distributions |
|
|
205 | (2) |
|
6.3.1 Marginal distributions |
|
|
205 | (1) |
|
6.3.2 Conditional distributions |
|
|
206 | (1) |
|
6.3.3 Multiple regression |
|
|
207 | (1) |
|
6.4 Conditional sampling method |
|
|
207 | (1) |
|
6.5 The method of moments estimation |
|
|
208 | (4) |
|
6.5.1 Observations and notations |
|
|
208 | (1) |
|
6.5.2 The traditional moments method |
|
|
209 | (1) |
|
6.5.3 Mosimann's moments method |
|
|
210 | (2) |
|
6.6 The method of maximum likelihood estimation |
|
|
212 | (6) |
|
6.6.1 The NewtonRaphson algorithm |
|
|
212 | (2) |
|
6.6.2 The Fisher scoring algorithm |
|
|
214 | (2) |
|
6.6.3 The EM gradient algorithm |
|
|
216 | (2) |
|
|
218 | (3) |
|
6.7.1 The forest pollen data |
|
|
218 | (1) |
|
6.7.2 The teratogenesis data |
|
|
219 | (2) |
|
6.8 Testing the multinomial assumption against the Dirichletmultinomial alternative |
|
|
221 | (6) |
|
6.8.1 The likelihood ratio statistic and its null distribution |
|
|
221 | (2) |
|
|
223 | (2) |
|
6.8.3 Two illustrative examples |
|
|
225 | (2) |
7 Truncated Dirichlet distribution |
|
227 | (20) |
|
|
227 | (3) |
|
|
227 | (1) |
|
7.1.2 Truncated beta distribution |
|
|
228 | (2) |
|
|
230 | (3) |
|
7.2.1 Case A: matrix A is known |
|
|
231 | (1) |
|
7.2.2 Case B: matrix A is unknown |
|
|
232 | (1) |
|
7.2.3 Case C: matrix A is partially known |
|
|
232 | (1) |
|
7.3 Conditional sampling method |
|
|
233 | (4) |
|
7.3.1 Consistent convex polyhedra |
|
|
233 | (1) |
|
7.3.2 Marginal distributions |
|
|
234 | (1) |
|
7.3.3 Conditional distributions |
|
|
234 | (2) |
|
7.3.4 Generation of random vector from a truncated Dirichlet distribution |
|
|
236 | (1) |
|
7.4 Gibbs sampling method |
|
|
237 | (2) |
|
7.5 The constrained maximum likelihood estimates |
|
|
239 | (2) |
|
7.6 Application to misclassification |
|
|
241 | (4) |
|
7.6.1 Screening test with binary misclassifications |
|
|
241 | (1) |
|
7.6.2 Casecontrol matched-pair data with polytomous misclassifications |
|
|
242 | (3) |
|
7.7 Application to uniform design of experiment with mixtures |
|
|
245 | (2) |
8 Other related distributions |
|
247 | (28) |
|
8.1 The generalized Dirichlet distribution |
|
|
247 | (7) |
|
|
247 | (3) |
|
8.1.2 Statistical inferences |
|
|
250 | (1) |
|
8.1.3 Analyzing the crime survey data |
|
|
250 | (2) |
|
8.1.4 Choice of an effective importance density |
|
|
252 | (2) |
|
8.2 The hyper-Dirichlet distribution |
|
|
254 | (4) |
|
8.2.1 Motivating examples |
|
|
254 | (2) |
|
|
256 | (2) |
|
8.3 The scaled Dirichlet distribution |
|
|
258 | (5) |
|
|
258 | (1) |
|
8.3.2 Stochastic representation and density function |
|
|
259 | (1) |
|
|
260 | (3) |
|
8.4 The mixed Dirichlet distribution |
|
|
263 | (6) |
|
|
263 | (1) |
|
8.4.2 Stochastic representation |
|
|
264 | (1) |
|
|
265 | (1) |
|
8.4.4 Marginal distributions |
|
|
266 | (2) |
|
8.4.5 Conditional distributions |
|
|
268 | (1) |
|
8.5 The Liouville distribution |
|
|
269 | (3) |
|
8.6 The generalized Liouville distribution |
|
|
272 | (3) |
Appendix A: Some useful S-plus Codes |
|
275 | (14) |
References |
|
289 | (14) |
Author index |
|
303 | (4) |
Subject index |
|
307 | |