Atnaujinkite slapukų nuostatas

El. knyga: Dirty Window: Diffuse and Translucent Molecular Gas in the Interstellar Medium

  • Formatas: EPUB+DRM
  • Serija: Astrophysics and Space Science Library 442
  • Išleidimo metai: 06-Apr-2017
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783662543504
  • Formatas: EPUB+DRM
  • Serija: Astrophysics and Space Science Library 442
  • Išleidimo metai: 06-Apr-2017
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783662543504

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book offers an excellent introduction to the physics of molecular gas in the Galaxy. It deals with the diffuse interstellar medium which provides an interesting environment for exploring the neutral gas content of a galaxy like the Milky Way and the techniques necessary for studying this non-stellar component.After an initial exposition of the phases of the interstellar medium and the role of gas in a spiral galaxy, the authors discuss the transition from atomic to molecular gas. They then consider basic radiative transfer and molecular spectroscopy with particular emphasis on the molecules useful for studying low-density molecular gas. Observational techniques for investigating the gas and the dust component of the diffuse interstellar medium throughout the electromagnetic spectrum are explored emphasizing results from the recent Herschel and Planck missions. A brief exposition of some of the theoretical techniques for studying gas in the Galaxy is followed by a discussion

of how these techniques are applied to molecular clouds in general and high-latitude clouds in particular. The high-latitude molecular clouds are examined in detail as vehicles for applying the techniques developed in the book. The role of turbulence in the origin and dynamics of high-latitude clouds is discussed and the impact of these low-extinction molecular clouds on extragalactic studies is examined.The book is targeted at graduate students or postdocs who are entering the field of interstellar medium studies.

A quick look at the diffuse interstellar medium.- Radiative transfer considerations.- The diffuse ISM from the ground - chemistry and tracers.- Observing the diffuse ISM - making sense of the radio observations.- Observing the diffuse ISM - the space missions.- Observing in the Dark: The Dust-Gas Connection.- Surveying the molecular Milky Way.- The relationship between CO and H2.- Surveys for high-latitude molecular clouds.- Distances.- Dynamical Considerations: Instabilities and Turbulence.- Coda.-

Recenzijos

The book adopts a largely historical approach, with comprehensive references. Each reader will find much of interest in the wide coverage of selected topics. The book is recommended to anyone with an interest in the interstellar medium. (David A. Williams, The Observatory, April, 2018)

1 A Quick Look at the Diffuse Interstellar Medium
1(28)
1.1 Introduction
1(1)
1.2 Overview of the ISM and Its Role in Spiral Galaxies
2(3)
1.2.1 A Remark on Physical Processes in the ISM
4(1)
1.3 How Does the ISM Manifest Itself in a Galaxy Like the Milky Way?
5(4)
1.4 Why Does It Break Up into Phases?
9(1)
1.5 The Phases of the ISM: Observational Signatures
10(6)
1.5.1 The Hot Ionized Medium
11(1)
1.5.2 The Warm Ionized Medium
12(1)
1.5.3 The Warm Neutral Medium
13(1)
1.5.4 The Cold Neutral Medium
14(2)
1.6 Molecular Gas: Why Some of It Is a Phase and Some Isn't
16(2)
1.7 The Transition from Atomic to Molecular Gas
18(3)
1.7.1 Photodissociation Regions: PDRs
18(2)
1.7.2 Diffuse vs. Dark Clouds
20(1)
1.8 The Role of Dust
21(2)
1.9 Cosmic Rays
23(1)
1.10 The Concept of a "Molecular Cloud"
24(5)
References
25(4)
2 Radiative Transfer Considerations
29(40)
2.1 Introduction
29(1)
2.2 The Transfer of Radiation Through the Interstellar Medium
30(34)
2.2.1 Statistical Balance
32(2)
2.2.2 Radiative Processes in the Rayleigh-Jeans Limit
34(1)
2.2.3 The Line Profile Function
34(5)
2.2.4 Obtaining Column Densities from Absorption Lines: Equivalent Width and Curve of Growth Methods
39(3)
2.2.5 Obtaining Column Densities from Emission Lines
42(1)
2.2.6 An Example: HI---The 21 Centimeter Line
43(4)
2.2.7 Line Pumping by the Cosmic Background Radiation: The Optical CN Transitions
47(1)
2.2.8 Collisional Excitation in a Nearly Collisionless Medium
48(3)
2.2.9 Dynamical and Nonlocal Complications to Radiative Transfer
51(6)
2.2.10 Elemental Abundances and Depletion in the Diffuse Medium
57(3)
2.2.11 H2 and Fine Structure Transitions
60(2)
2.2.12 Diffuse Interstellar Features in Emission and Absorption: Radiative Excitations and Fluorescence
62(2)
2.3 Radio Continuum Measurements of the Diffuse Medium
64(5)
References
66(3)
3 The Diffuse ISM from the Ground: Chemistry and Tracers
69(38)
3.1 Introduction
69(1)
3.2 The First Detections of Interstellar Molecules
70(2)
3.3 Astrochemistry
72(11)
3.3.1 General Considerations
73(4)
3.3.2 The Oxygen Network
77(1)
3.3.3 The Carbon Network
78(1)
3.3.4 The Nitrogen Network
79(2)
3.3.5 Cosmic Rays as Agents of Astrochemical Processing
81(2)
3.4 Molecular Tracers of the Diffuse ISM in the Radio Regime
83(14)
3.4.1 The CO Rotational Transitions
84(1)
3.4.2 The OH 18 cm Lines
85(6)
3.4.3 The CH 3.3 GHz Lines
91(1)
3.4.4 The H2CO 4.8 GHz Line
92(3)
3.4.5 The HCO+(1-0) Transition
95(1)
3.4.6 C3H2, C2H, and C3H+
96(1)
3.4.7 HF, a Tracer of Molecular Hydrogen
97(1)
3.5 Optical Manifestations of Diffuse Molecular Gas and Dust
97(5)
3.5.1 CH, CH+, CN
97(2)
3.5.2 C2
99(1)
3.5.3 The Diffuse Interstellar Bands
99(1)
3.5.4 Red Luminescence
100(2)
3.6 The Molecular Medium in a Cosmological Line of Sight: PKS 1830-211
102(5)
References
103(4)
4 Observing the Diffuse ISM: Making Sense of the Radio Observations
107(24)
4.1 Introduction
107(1)
4.2 Radio Observations: Practical Considerations
108(16)
4.2.1 The Radiometer Equation
108(3)
4.2.2 Frequency Switching vs. Position Switching
111(3)
4.2.3 On-Off Radio Measurements
114(1)
4.2.4 Polarization Considerations
115(3)
4.2.5 Sidelobes and Stray Radiation
118(1)
4.2.6 Converting from Antenna Temperature to Beam or Radiation Temperature
119(2)
4.2.7 Interference
121(2)
4.2.8 Mapping Techniques
123(1)
4.3 Analysis of Radio Spectroscopic Data
124(7)
4.3.1 Virial Masses from Spectral Maps
124(1)
4.3.2 A Brief Mention of Statistical Tools
125(3)
References
128(3)
5 Observing the Diffuse ISM: The Space Missions
131(24)
5.1 Introduction
131(1)
5.2 The Radio Regime
132(7)
5.2.1 The Planck Observatory
132(5)
5.2.2 WMAP
137(2)
5.3 Probing the Infrared Sky
139(6)
5.3.1 IRAS
140(1)
5.3.2 COBE and ISO
141(2)
5.3.3 Spitzer, Herschel, and WISE
143(2)
5.4 Spectral Tracers of Diffuse Molecular Gas in the Far-Infrared
145(1)
5.5 Probing the Ultraviolet Sky
146(3)
5.5.1 IUE and HST
147(1)
5.5.2 FUSE
148(1)
5.6 Probing the X-Ray Sky
149(1)
5.7 Probing the Gamma-Ray Sky
150(5)
5.7.1 How Gamma Rays Trace Molecular Gas
151(1)
References
152(3)
6 Observing in the Dark: The Dust-Gas Connection
155(30)
6.1 Introduction
155(1)
6.2 Extinction and Color Excess
156(6)
6.2.1 A Bit of Grain Optics
159(3)
6.3 The Correlation Between Gas and Dust
162(1)
6.4 Diffuse Reflection Nebulae
162(1)
6.5 Diffuse Galactic Ultraviolet Emission
163(1)
6.6 Diffuse Galactic Infrared Emission
164(8)
6.6.1 Light Echoes, Halos, and Reflection Nebulae
165(3)
6.6.2 Polarization
168(1)
6.6.3 Anomalous Microwave Emission and Spinning Grains
169(2)
6.6.4 Grain Size Distributions
171(1)
6.7 Tracing Molecular Gas Using Dust Maps
172(2)
6.7.1 The Schlegel, Finkbeiner, and Davis (SFD) Dust Maps
173(1)
6.8 The E(B-V) Molecular Threshold
174(3)
6.9 Ices and Their Signatures
177(1)
6.9.1 Other Sources of Information: Ices in the Solar System and Laboratory
178(1)
6.10 Gas to Dust Ratio from Cosmic Ray-Produced γ-Rays
178(7)
6.10.1 Extinction from Hydrogen Lyman Continuum Absorption Measurements
180(1)
6.10.2 Time Variability of the Diffuse Gas
180(1)
References
181(4)
7 Surveying the Molecular Milky Way
185(20)
7.1 Introduction
185(1)
7.2 The CO Surveys Along the Galactic Plane
186(4)
7.2.1 Early Results
186(2)
7.2.2 Recent Surveys
188(2)
7.3 Giant Molecular Clouds
190(2)
7.4 The Smaller Molecular Clouds
192(9)
7.4.1 Dark Clouds
193(3)
7.4.2 Translucent Molecular Clouds
196(3)
7.4.3 Diffuse Molecular Clouds
199(2)
7.5 What Is a Molecular Cloud?
201(4)
References
201(4)
8 The Relationship Between CO and H2
205(22)
8.1 Introduction
205(1)
8.2 The CO-H2 Conversion Factor
206(8)
8.2.1 Xco from Extinction
207(1)
8.2.2 Xco Using 13CO(1-0)
208(1)
8.2.3 Xco from Virial Equilibrium Considerations
208(2)
8.2.4 Xco from Gamma-Rays
210(1)
8.2.5 Xco from Far-Infrared Emission
211(1)
8.2.6 Xco Using the CH 3335 MHz Line
212(2)
8.3 Do the Galactic CO Surveys Trace Most of the Molecular Gas?
214(3)
8.4 On the Question of Dark Gas
217(10)
8.4.1 Sensitive CO(1-0) Observations
219(2)
8.4.2 OH as the Best Tracer of Dark Gas?
221(2)
References
223(4)
9 Surveys for High-Latitude Molecular Clouds
227(22)
9.1 Introduction
227(1)
9.2 The Initial Searches
228(3)
9.3 The MBM Survey
231(4)
9.4 The IRAS Cirrus: High Latitude Cloud Connection
235(2)
9.5 Post-MBM CO Surveys at High Latitudes
237(4)
9.6 The Georgia-Harvard CfA High Latitude Survey
241(5)
9.7 High-Latitude Molecular Gas via Infrared Techniques
246(3)
References
247(2)
10 Distances
249(18)
10.1 Introduction
249(1)
10.2 Distances to the Clouds: Galactic Rotation Curve
250(1)
10.3 Distances to the Clouds: Statistical
250(5)
10.3.1 A Practical Example: High-Latitude Molecular Clouds
253(2)
10.4 Distances to the Clouds: Direct Measurements
255(6)
10.4.1 The Method of Wolf Diagrams
255(3)
10.4.2 Distances from Spectroscopy
258(1)
10.4.3 The Method of Photometry
259(2)
10.5 Asymmetries in the Distribution of High-Latitude Molecular Clouds
261(2)
10.6 Molecular Clouds in the Halo?
263(1)
10.7 The Southern Extension of the Taurus Dark Clouds
264(3)
References
265(2)
11 Dynamical Considerations: Instabilities and Turbulence
267(28)
11.1 Introduction
267(1)
11.2 Virial Theorem and "Stability
268(3)
11.3 Reprise: What Is a Cloud?
271(4)
11.3.1 Isothermal Cloud Models
271(2)
11.3.2 Gravothermal Instability
273(2)
11.4 Thermal Instability
275(2)
11.5 Turbulence
277(18)
11.5.1 Introduction
277(2)
11.5.2 Dynamical Separations
279(1)
11.5.3 The Source Scale and the Cascade
280(5)
11.5.4 Statistical Methods for Dynamical Analyses
285(7)
11.5.5 Empirical Line Width-Size Relations
292(1)
11.5.6 Some Open Questions
293(1)
References
293(2)
12 Coda
295(2)
12.1 What Is a Molecular Cloud?
295(2)
Reference
296(1)
A Regulatory Institutions for Radio Frequency Interference (Chap. 4) 297(2)
B Radio Band Designations (Chap. 4) 299(2)
C The Kramers-Kronig Relations and the Relation Between Cabs and Csca Through Reciprocity (Chap. 6) 301(2)
Index 303
Loris Magnani is Professor of Astronomy at the University of Georgia, USA.

Steve Shore is Professore Ordinario, Astrofisica, Dipartimento di Fisica Enrico Fermi, Universita di Pisa, Italy. He serves as associate editor of the journal Astronomy & Astrophysics.