Atnaujinkite slapukų nuostatas

El. knyga: Discontinuities in the Electromagnetic Field

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

A multifaceted approach to understanding, calculating, and managing electromagnetic discontinuities

Presenting new, innovative approaches alongside basic results, this text helps readers better understand, calculate, and manage the discontinuities that occur within the electromagnetic field. Among the electromagnetic discontinuities explored in this volume are:





Bounded jump discontinuities at the interfaces between two media or on the material sheets that model very thin layers



Unbounded values at the edges of wedge-type structures



Unbounded values at the tips of conical structures





The text examines all the key issues related to the bodies that carry the interfaces, edges, or tips, whether these bodies are at rest or in motion with respect to an observer. In addition to its clear explanations, the text offers plenty of step-by-step examples to clarify complex theory and calculations. Moreover, readers are encouraged to fine-tune their skills and knowledge by solving the text's problem sets.

Three fundamental, classical theories serve as the foundation for this text: distributions, confluence, and the special theory of relativity. The text sets forth the fundamentals of all three of these theories for readers who are not fully familiar with them. Moreover, the author demonstrates how to solve electromagnetic discontinuity problems by seamlessly combining all three theories into a single approach.

With this text as their guide, readers can apply a unique philosophy and approach to the investigation and development of structures that have the potential to enhance the capabilities of electronics, antennas, microwaves, acoustics, medicine, and many more application areas.
Preface ix
1 Introduction
1(6)
2 Distributions and Derivatives in the Sense of Distribution
7(42)
2.1 Functions and Distributions
7(2)
2.2 Test Functions. The Space C0∞
9(5)
2.3 Convergence in D
14(2)
2.4 Distribution
16(5)
2.5 Some Simple Operations in D'
21(5)
2.5.1 Multiplication by a Real Number or a Function
21(1)
2.5.2 Translation and Rescaling
21(1)
2.5.3 Derivation of a Distribution
22(4)
2.6 Order of a Distribution
26(5)
2.7 The Support of a Distribution
31(2)
2.8 Some Generalizations
33(16)
2.8.1 Distributions on Multidimensional Spaces
33(5)
2.8.2 Vector-Valued Distributions
38(11)
3 Maxwell Equations in the Sense of Distribution
49(18)
3.1 Maxwell Equations Reduced into the Vacuum
49(5)
3.1.1 Some Simple Examples
53(1)
3.2 Universal Boundary Conditions and Compatibility Relations
54(5)
3.2.1 An Example. Discontinuities on a Combined Sheet
57(2)
3.3 The Concept of Material Sheet
59(3)
3.4 The Case of Monochromatic Fields
62(5)
3.4.1 Discontinuities on the Interface Between Two Simple Media that Are at Rest
64(3)
4 Boundary Conditions on Material Sheets at Rest
67(42)
4.1 Universal Boundary Conditions and Compatibility Relations for a Fixed Material Sheet
67(2)
4.2 Some General Results
69(1)
4.3 Some Particular Cases
70(39)
4.3.1 Planar Material Sheet Between Two Simple Media
70(21)
4.3.2 Cylindrically or Spherically Curved Material Sheet Located Between Two Simple Media
91(2)
4.3.3 Conical Material Sheet Located Between Two Simple Media
93(16)
5 Discontinuities on a Moving Sheet
109(40)
5.1 Special Theory of Relativity
110(10)
5.1.1 The Field Created by a Uniformly Moving Point Charge
112(2)
5.1.2 The Expressions of the Field in a Reference System Attached to the Charged Particle
114(1)
5.1.3 Lorentz Transformation Formulas
115(3)
5.1.4 Transformation of the Electromagnetic Field
118(2)
5.2 Discontinuities on a Uniformly Moving Surface
120(18)
5.2.1 Transformation of the Universal Boundary Conditions
123(3)
5.2.2 Transformation of the Compatibility Relations
126(1)
5.2.3 Some Simple Examples
126(12)
5.3 Discontinuities on a Nonuniformly Moving Sheet
138(11)
5.3.1 Boundary Conditions on a Plane that Moves in a Direction Normal to Itself
139(4)
5.3.2 Boundary Conditions on the Interface of Two Simple Media
143(6)
6 Edge Singularities on Material Wedges Bounded by Plane Boundaries
149(30)
6.1 Introduction
149(4)
6.2 Singularities at the Edges of Material Wedges
153(1)
6.3 The Wedge with Penetrable Boundaries
154(20)
6.3.1 The H Case
156(15)
6.3.2 The E Case
171(3)
6.4 The Wedge with Impenetrable Boundaries
174(1)
6.5 Examples. Application to Half-Planes
175(1)
6.6 Edge Conditions for the Induced Surface Currents
176(3)
7 Tip Singularities at the Apex of a Material Cone
179(30)
7.1 Introduction
179(6)
7.2 Algebraic Singularities of an H-Type Field
185(6)
7.2.1 Contribution of the Energy Restriction
185(1)
7.2.2 Contribution of the Boundary Conditions
186(5)
7.3 Algebraic Singularities of an E-Type Field
191(2)
7.4 The Case of Impenetrable Cones
193(2)
7.5 Confluence and Logarithmic Singularities
195(2)
7.6 Application to some Widely used Actual Boundary Conditions
197(3)
7.7 Numerical Solutions of the Transcendental Equations Satisfied by the Minimal Index
200(9)
7.7.1 The Case of Very Sharp Tip
200(1)
7.7.2 The Case of Real-Valued Minimal ν
201(2)
7.7.3 A Function-Theoretic Method to Determine Numerically the Minimal ν
203(6)
8 Temporal Discontinuities
209(6)
8.1 Universal Initial Conditions
209(2)
8.2 Linear Mediums in the Generalized Sense
211(1)
8.3 An Illustrative Example
212(3)
References 215(4)
Index 219
IEEE Press Series on Electromagnetic Wave Theory
M. Mithat Idemen, PhD, is Professor in the Mathematics Department of Yeditepe University (Istanbul, Turkey) and honorary member of the Turkish Academy of Sciences (TüBA). He has served as editor and associate editor for various scientific journals, including the International Series of Monographs on Advanced Electromagnetics.