Atnaujinkite slapukų nuostatas

El. knyga: Distance Expanding Random Mappings, Thermodynamical Formalism, Gibbs Measures and Fractal Geometry

  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Mathematics 2036
  • Išleidimo metai: 25-Oct-2011
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783642236501
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Mathematics 2036
  • Išleidimo metai: 25-Oct-2011
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783642236501
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The theory of random dynamical systems originated from stochastic
differential equations. It is intended to provide a framework and
techniques to describe and analyze the evolution of dynamical
systems when the input and output data are known only approximately, according to some probability distribution. The development of this field, in both the theory and applications, has gone in many directions. In this manuscript we introduce measurable expanding random dynamical systems, develop the thermodynamical formalism and establish, in particular, the exponential decay of correlations and analyticity of the expected pressure although the spectral gap property does not hold. This theory is then used to investigate fractal properties of conformal random systems. We prove a Bowen's formula and develop the multifractal formalism of the Gibbs states. Depending on the behavior of the Birkhoff sums of the pressure function we arrive at a natural classification of the systems into two classes: quasi-deterministic systems, which share many
properties of deterministic ones; and essentially random systems, which are rather generic and never bi-Lipschitz equivalent to deterministic systems. We show that in the essentially random case the Hausdorff measure vanishes, which refutes a conjecture by Bogenschutz and Ochs. Lastly, we present applications of our results to various specific conformal random systems and positively answer a question posed by Bruck and Buger concerning the Hausdorff dimension of quadratic random Julia sets.

1 Introduction
1(4)
2 Expanding Random Maps
5(12)
2.1 Introductory Examples
5(3)
2.2 Preliminaries
8(1)
2.3 Expanding Random Maps
8(1)
2.4 Uniformly Expanding Random Maps
9(1)
2.5 Remarks on Expanding Random Mappings
10(1)
2.6 Visiting Sequences
11(1)
2.7 Spaces of Continuous and Holder Functions
12(1)
2.8 Transfer Operator
13(1)
2.9 Distortion Properties
14(3)
3 The RPF-Theorem
17(22)
3.1 Formulation of the Theorems
17(2)
3.2 Frequently used Auxiliary Measurable Functions
19(1)
3.3 Transfer Dual Operators
19(3)
3.4 Invariant Density
22(2)
3.5 Levels of Positive Cones of Holder Functions
24(3)
3.6 Exponential Convergence of Transfer Operators
27(4)
3.7 Exponential Decay of Correlations
31(1)
3.8 Uniqueness
32(1)
3.9 Pressure Function
33(2)
3.10 Gibbs Property
35(2)
3.11 Some Comments on Uniformly Expanding Random Maps
37(2)
4 Measurability, Pressure and Gibbs Condition
39(8)
4.1 Measurable Expanding Random Maps
39(2)
4.2 Measurability
41(1)
4.3 The Expected Pressure
42(1)
4.4 Ergodicity of μ
43(1)
4.5 Random Compact Subsets of Polish Spaces
43(4)
5 Fractal Structure of Conformal Expanding Random Repellers
47(10)
5.1 Bowen's Formula
47(4)
5.2 Quasi-Deterministic and Essential Systems
51(3)
5.3 Random Cantor Set
54(3)
6 Multifractal Analysis
57(12)
6.1 Concave Legendre Transform
57(2)
6.2 Multifractal Spectrum
59(8)
6.3 Analyticity of the Multifractal Spectrum for Uniformly Expanding Random Maps
67(2)
7 Expanding in the Mean
69(6)
7.1 Definition of Maps Expanding in the Mean
69(1)
7.2 Associated Induced Map
70(2)
7.3 Back to the Original System
72(1)
7.4 An Example
73(2)
8 Classical Expanding Random Systems
75(18)
8.1 Definition of Classical Expanding Random Systems
75(5)
8.2 Classical Conformal Expanding Random Systems
80(1)
8.3 Complex Dynamics and Brtick and Btiger Polynomial Systems
81(3)
8.4 Denker-Gordin Systems
84(3)
8.5 Conformal DG-Systems
87(2)
8.6 Random Expanding Maps on Smooth Manifold
89(1)
8.7 Topological Exactness
89(1)
8.8 Stationary Measures
90(3)
9 Real Analyticity of Pressure
93(16)
9.1 The Pressure as a Function of a Parameter
93(4)
9.2 Real Cones
97(3)
9.3 Canonical Complexification
100(3)
9.4 The Pressure is Real-Analytic
103(3)
9.5 Derivative of the Pressure
106(3)
References 109(2)
Index 111