Atnaujinkite slapukų nuostatas

El. knyga: Domain Walls: From Fundamental Properties to Nanotechnology Concepts

, (Associate Professor, Department of Materials Science and Engineering, Norwegian University of Science and Technology), (School of Mathematics and Physics), (School of Materials Science and Engineering, The University of New South Wales)

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Technological evolution and revolution are both driven by the discovery of new functionalities, new materials and the design of yet smaller, faster, and more energy-efficient components. Progress is being made at a breathtaking pace, stimulated by the rapidly growing demand for more powerful and readily available information technology. High-speed internet and data-streaming, home automation, tablets and smartphones are now "necessities" for our everyday lives. Consumer expectations for progressively more data storage and exchange appear to be insatiable.

Oxide electronics is a promising and relatively new field that has the potential to trigger major advances in information technology. Oxide interfaces are particularly intriguing. Here, low local symmetry combined with an increased susceptibility to external fields leads to unusual physical properties distinct from those of the homogeneous bulk.

In this context, ferroic domain walls have attracted recent attention as a completely new type of oxide interface. In addition to their functional properties, such walls are spatially mobile and can be created, moved, and erased on demand. This unique degree of flexibility enables domain walls to take an active role in future devices and hold a great potential as multifunctional 2D systems for nanoelectronics. With domain walls as reconfigurable electronic 2D components, a new generation of adaptive nano-technology and flexible circuitry becomes possible, that can be altered and upgraded throughout the lifetime of the device. Thus, what started out as fundamental research, at the limit of accessibility, is finally maturing into a promising concept for next-generation technology.
1 Physical Properties inside Domain Walls: Basic Principles and Scanning Probe Measurements
1(22)
G. Catalan
N. Domingo
2 Novel Phases at Domain Walls
23(13)
S. Farokhipoor
C. Magen
D. Rubi
B. Noheda
3 First-Principles Studies of Structural Domain Walls
36(40)
J. Iniguez
4 Fundamental Properties of Ferroelectric Domain Walls from Ginzburg-Landau Models
76(33)
P. Ondrejkovic
P. Marton
V. Stepkova
J. Hlinka
5 Introduction to Domain Boundary Engineering
109(20)
E. K. H. Salje
G. Lu
6 Improper Ferroelectric Domain Walls
129(23)
D. M. Evans
Ch. Cochard
R. G. P. McQuaid
A. Cano
J. M. Gregg
D. Meier
7 Three-Dimensional Optical Analysis of Ferroelectric Domain Walls
152(33)
A. Haußmann
L. M. Eng
S. Cherifi-Hertel
8 Turing Patterns in Ferroelectric Domains: Nonlinear Instabilities
185(14)
J. F. Scott
9 Photoelectric Effects at Domain Walls
199(18)
M.-M. Yang
M. Alexe
10 Transmission Electron Microscopy Study of Ferroelectric Domain Walls in BiFeO3 Thin Films: Structures and Switching Dynamics
217(28)
L. Li
X. Pan
11 Nanoscale Ferroelectric Switching: A Method to Inject and Study Non-equilibrium Domain Walls
245
A. V. Ievlev
A. Tselev
R. Vasudevan
S. V. Kalinin
A. Morozovska
P. Maksymovych
Professor Dennis Meier Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Trondheim.



Professor Jan Seidel School of Materials Science & Engineering, UNSW Sydney.



Professor Marty Gregg Centre for Nanostructured Media (CNM), Condensed Matter Physics and Materials Science, Queen's University Belfast.

Professor Ramamoorthy Ramesh Purnendu Chatterjee Chair in Energy Technologies, Department of Materials Science and Engineering and Department of Physics, University of California, Berkeley.