Atnaujinkite slapukų nuostatas

El. knyga: Drilling in Extreme Environments: Penetration and Sampling on Earth and other Planets

Edited by (Honeybee Robotics Spacecraft Mechanisms Corporation, New York, USA), Edited by (Jet Propulsion Lab, Pasadena, USA)
  • Formatas: PDF+DRM
  • Išleidimo metai: 04-Aug-2009
  • Leidėjas: Blackwell Verlag GmbH
  • Kalba: eng
  • ISBN-13: 9783527626632
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Išleidimo metai: 04-Aug-2009
  • Leidėjas: Blackwell Verlag GmbH
  • Kalba: eng
  • ISBN-13: 9783527626632
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Uniquely comprehensive and up to date, this book covers terrestrial as well as extraterrestrial drilling and excavation, combining the technology of drilling with the state of the art in robotics. The authors come from industry and top ranking public and corporate research institutions and provide here real-life examples, problems, solutions and case studies, backed by color photographs throughout.
The result is a must-have for oil companies and all scientists involved in planetary research with robotic probes.
With a foreword by Harrison "Jack" Smith -- the first geologist to drill on the moon.

Recenzijos

"Uniquely comprehensive and up to date, this book covers terrestrial as well as extraterrestrial drilling and excavation, combining the technology of drilling with the state of the art in robotics. . . Beautifully illustrated with half tone reproductions, and drawings and graphs and tables with 26 pages of color plates, the volume will be found to be a significant addition to drilling." (Current Engineering Practice, 2011)  

Foreword v
Preface xix
List of Contributors
xxi
Acknowledgements xxvii
Color Plates xxxi
Drills as Tools for Media Penetration and Sampling
1(30)
Yoseph Bar-Cohen
Kris Zacny
Introduction and Historical Perspective
1(8)
Methods of Drilling and Penetration of Objects
9(5)
Mechanical Techniques
9(3)
Thermal Techniques
12(1)
Chemical Techniques
13(1)
Types of Mechanical Drills
14(1)
Rotary Drill
14(1)
Hammer Drill
15(1)
Rotary-Hammer Drill
15(1)
Bits -- the End-Effector of Drills
15(4)
Twist Drill Bits
15(1)
Gun Drill
16(1)
Centering and Spotting Drill Bits
17(1)
Material Makeup of Bits
18(1)
Application of Drilling Techniques
19(8)
Geological Studies and Search for Resources
19(1)
Mining and Tunneling
20(1)
Petroleum and Gas Drilling and Exploration
21(2)
Ocean and Seafloor Drilling
23(1)
Planetary Drilling and Sampling
23(2)
Ice Drilling
25(1)
Dental Drills
25(2)
Conclusion
27(4)
References
28(3)
Principles of Drilling and Excavation
31(110)
Gang Han
Maurice B. Dusseault
Emmanuel Detournay
Bradley J. Thomson
Kris Zacny
Introduction
31(1)
Physical Properties of Rocks
31(34)
Terrestrial Rocks
31(17)
Extraterrestrial Rocks
48(4)
Influence Factors for Rock Mechanical Properties
52(13)
Stresses and Energy in Drilling
65(24)
Stress in Sedimentary Basins
65(18)
Stresses Around a Borehole
83(6)
Theories of Rock Breakage
89(37)
Percussion Drilling
89(15)
Rotary Drilling
104(14)
Percussion-Rotary
118(1)
Other Drilling Methods
118(1)
Drilling Efficiency
119(7)
Conclusion
126(15)
Underground Rocks and Stresses
126(2)
Drilling Theories
128(1)
Effect of Environment on Drilling
129(3)
References
132(9)
Ground Drilling and Excavation
141(80)
Alfred William (Bill) Eustes III
William W. Fleckenstein
Leslie Gertsch
Ning Lu
Michael S. Stoner
Alfred Tischler
Background
141(3)
Three Requirements for Any Drilling System
141(2)
Types of Earth Boreholes
143(1)
Drilling Rigs
144(18)
Percussion Drilling Rigs
144(5)
Rotary Drilling Rigs
149(13)
Penetrating the Material
162(12)
Basic Rock Destruction Mechanism
163(2)
Specific Energy Comparison of Different Drilling Methods
165(9)
Cuttings Transport and Disposal
174(9)
Cuttings Transport from Under a Bit in Terrestrial Operations
174(1)
Cuttings Transport Beyond the Bit
175(3)
Cuttings Removal In Situ
178(1)
Recompaction of Cuttings
179(2)
Creation of Disposal Volume
181(2)
Directional Drilling
183(16)
Reference Systems
183(2)
Directional Control Factors
185(103)
Bit Design
288
Bottom Hole Assemblies
191(1)
Directional Mechanics
192(1)
BHA Modeling
193(3)
Planning
196(1)
Survey Techniques
197(2)
Survey Calculations
199(1)
Sidewall Friction and Unconsolidated Drilling Issues
199(15)
Soil Penetration by Cones
200(1)
Pile Driving Formulas
201(2)
Methods of Cone Resistance Determination
203(6)
Pressure Bubble
209(1)
Permafrost Piling
210(1)
Vibratory Pile Driving
210(2)
Impact on Penetration Resistance
212(2)
Conclusion
214(7)
References
215(6)
Ice Drilling and Coring
221(88)
Charles R. Bentley
Bruce R. Koci
Laurent J.-M. Augustin
Robin J. Bolsey
James A. Green
Jay D. Kyne
Donald A. Lebar
William P. Mason
Alexander J. Shturmakov
Hermann F. Engelhardt
William D. Harrison
Michael H. Hecht
Victor Zagorodnov
Introduction
221(3)
Coring Drills
224(38)
Surface-Driven Rotary Drills
224(2)
Wireline Drill
226(1)
Cable-Suspended Electromechanical Drills
226(22)
Cable-Suspended Electrothermal Drills
248(9)
Hand Augers
257(2)
``Koci Drill'' for Debris-Laden Ice
259(3)
Hole-Only Drills
262(24)
Hot-Water Drilling Systems
262(21)
Flame-Jet Drill
283(1)
Steam Drills
283(1)
Electric Hot Points
284(1)
``Electrochaude''
284(1)
Rapid Air Movement Drill
285(1)
Coiled Tubing Drill for Ice
286(1)
Autonomous Ice-Melting Drills
286(5)
Cryobot
288(1)
Subsurface Ice Probe
289(2)
Drilling Fluids
291(4)
Main Fluids
293(1)
Densifiers
294(1)
Comments on Encountering the Bed
295(2)
Drilling to Characterize the Glacier Bed
297(3)
Accessing the Bed
297(2)
Sampling and Characterizing the Bed
299(1)
Conclusion
300(9)
References
303(6)
Seafloor Drilling
309(38)
Tim McGinnis
Introduction
309(1)
Offshore Drilling
309(3)
Exploration and Production Drill Ship
310(1)
Jack-Up Drill
311(1)
Semi-Submersible Drilling
311(1)
Geotechnical Drilling
312(1)
Scientific Drilling
313(5)
Drilling, Observation and Sampling of the Earth's Continental Crust (DOSECC)
313(2)
Integrated Ocean Drilling Program (IODP)
315(3)
Remotely Controlled Robotic Seafloor Drilling
318(18)
Robotic Drilling Techniques -- Rod Drilling
320(5)
Robotic Drilling Techniques -- Wireline Drilling
325(3)
Robotic Drilling Systems
328(8)
Non-Rotary Sampling
336(7)
Dredge Sampling
337(1)
Grab Sampling
337(1)
Gravity Coring
338(3)
Push Coring
341(2)
Vibrocoring
343(1)
Conclusion
343(4)
References
344(3)
Extraterrestrial Drilling and Excavation
347(212)
Kris Zacny
Yoseph Bar-Cohen
Kiel Davis
Pierre Coste
Gale Paulsen
Stewart Sherrit
Jeffrey George
Brian Derkowski
Steve Gorevan
Dale Boucher
Jose Guerrero
Takashi Kubota
Bradley J. Thomson
Scott Stanley
Peter Thomas
Nicholas Lan
Christopher McKay
Tullis C. Onstot
Carol Stoker
Brian Glass
Sachiko Wakabayashi
Lyle Whyte
Gianfranco Visentin
Edoardo Re
Lutz Richter
Mircea Badescu
Xiaoqi Bao
Roger Fincher
Takeshi Hoshino
Piergiovanni Magnani
Carlo Menon
Why Subsurface Exploration?
347(5)
Search for Evidence of Existing or Extinct Life
348(1)
Science Rationale for Drilling on Mars
349(3)
Search for Resources and In Situ Resource Utilization to Support Human Exploration
352(1)
Methods for Subsurface Access on Extraterrestrial Bodies
352(3)
Grinders and Rock Abrasion Tools
355(3)
Rock Abrasion Tool (RAT)
355(1)
The Beagle 2 Rock Corer Grinder
356(1)
Ultrasonic Rock Abrasion Tool (URAT)
356(2)
Scoops
358(8)
Surveyor Scoop
358(2)
Viking Lander Surface Sampler Acquisition Assembly
360(1)
Phoenix 2007 Scoop
361(3)
Micro End-Effector (MEE)
364(1)
Percussive Scoop
365(1)
Moles
366(11)
The European Space Agency Mobile Penetrometer
366(2)
The Moon/Mars Underground Mole (MMUM)
368(4)
Instrumented Mole System (IMS)
372(1)
Mole-Type Excavation Robot for Subsurface Exploration
373(4)
Ultrasonic and Percussive Actuated Drills
377(25)
Ultrasonically Assisted Drilling
377(2)
Ultrasonic/Sonic Driller/Corer (USDC)
379(8)
Mars Integrated Drilling and Sampling (MIDAS) System
387(3)
ESA Ultrasonic Rock Corer
390(2)
ESA Ultrasonic Drill Tool (UDT)
392(1)
Drill with Hammering Mechanism (DHM)
393(6)
Percussive Regolith Penetrometer
399(3)
Surface Drills
402(19)
Low-Force Sample Acquisition System (LSAS)
402(3)
Mini-Corer
405(2)
Coring and Abrading Tool (CAT)
407(4)
Small Sample Acquisition and Distribution Tool (SSA/DT)
411(1)
SENER Touch-and-Go Sampler
412(1)
Honeybee Robotics Touch-and-Go Sampler
413(3)
Near-Earth Asteroid Sample Return
416(1)
Titan Harpoon Sampler
417(4)
Shallow Drilling: One Meter Class Drills
421(41)
CNSR Sample Acquisition System for 1 m (SAS-1m)
422(1)
Sample Acquisition and Preprocessing System (EBRC)
423(15)
NORCAT's SCaD 2 m Drill
438(3)
ATK's Segmented Coring Auger Drill (SCAD)
441(3)
Pneumatic Drill and Excavation System
444(5)
The Sample Acquisition and Transfer Mechanism (SATM) Drill
449(2)
CNSR Sample Acquisition System for 3 m (SAS-3m)
451(1)
Rover-Based Deep Drill MicroRoSA
452(1)
Construction and Resource Utilization Explorer Drill
453(2)
Subsurface Corer Sampling System
455(3)
Subsurface Telescoping Sampling System
458(2)
Venus Drill
460(2)
Ten-Meter Class Drills
462(14)
Mars Astrobiology Research and Technology Experiment (MARTE)
462(2)
Drilling Automation for Mars Exploration (DAME)
464(5)
NORCAT's SCaD Deep Drill
469(4)
Subsurface Planetary Exploration Core Extracting System (SPECES) Drill
473(2)
Ultrasonic/Sonic Gopher
475(1)
Deep Drills (<10 m)
476(17)
Subsurface Explorer (SUBEX)
477(2)
Mars/Arctic Deep Drill
479(9)
Autonomous Tethered Corer
488(1)
Inchworm Deep Drilling System
489(2)
Modular Planetary Drill System (MPDS)
491(2)
Past and Present Subsurface Access Missions
493(11)
Apollo Drive Tubes and Drill
493(4)
Soviet Luna Drill
497(1)
Venera Drill
498(1)
The Rosetta Lander Drill, Sampler and Distribution System (SD2)
499(2)
The Huygens Penetrometer
501(1)
Sampling Mole PLUTO on Mars Express -- Beagle 2
502(1)
The Beagle 2 Rock Corer Grinder (RCG)
503(1)
Asteroid Surface Sampling Device
504(1)
Future Sampling Missions
504(6)
The Mars Science Laboratory (MSL) Rover Drill
504(2)
The ExoMars Drill
506(4)
Future European Prospects in Science and Exploration Programs
510(2)
Aurora
510(1)
Cosmic Vision
511(1)
Bio-Inspired Drilling Systems for Future Space Applications
512(8)
Biomimetics
512(1)
Bio-Inspiration from Wood Wasp Digging System
513(1)
Plant-Inspired Space Probe
514(1)
The Locust as a Model for Inspiring Digging System
515(1)
Descent Mechanism
516(1)
Material Transport System
517(1)
Gecko-Inspired Cuttings Removal
517(3)
Drilling Automation
520(1)
Background
520(1)
Why Space Drilling Needs Automation
520(1)
Diagnostic Approaches
521(1)
Testing of Subsurface Systems
521(7)
Reason for Testing in a Relevant Environment
522(1)
Japan Aerospace Exploration Agency (JAXA)
523(2)
Honeybee Robotics Drill Testing Facility
525(2)
ATK Space Subsurface Access Testing Laboratory
527(1)
Space Analogs on Earth for Field Test Simulations of In Situ Planetary Drilling
528(6)
Arctic Sites
529(3)
Rio Tinto, Spain
532(1)
Atacama Desert, Chile
532(1)
Lonar Crater, India
532(1)
Southwest United States
532(1)
Antarctic Dry Valleys
533(1)
Drill Evaluation Criteria
534(7)
Conclusions
541(18)
References
546(13)
Planetary Sample Handling and Processing
559(84)
Kris Zacny
Antonio Diaz-Calderon
Paul G. Backes
Kiel Davis
Chris Leger
Erik Mumm
Edward Tunstel
Jason Herman
Gale Paulsen
Yoseph Bar-Cohen
Introduction
559(5)
Why Sampling?
559(3)
Comminution Requirements for Planetary Applications
562(2)
Comminution
564(9)
Background to Comminution
564(1)
Theory of Rock Breaking
565(2)
Energy Requirements in Breaking Rock
567(1)
Analysis of Broken Material
568(3)
Sample Caking During Grinding
571(1)
Cryo Grinding
572(1)
Hardness of Material vs Hardness of Crushing/Grinding Surfaces
573(1)
Classification of Comminution Equipment
573(1)
Classification According to Size of the Product
574(1)
Classification According to Comminution Process
574(1)
Nipping (Compression) Machines
574(4)
Jaw Crushers
575(1)
Gyratory and Cone Crushers
576(1)
Roll Crusher
577(1)
Impact Machines
578(5)
Rotary Hammer
580(1)
Vertical Shaft Impactor
580(1)
Pin Mill
580(1)
Stamp Mill
580(1)
Vibration Mill
581(1)
Planetary Mill
582(1)
Cryogenic/Magnetic Hammer Mill
582(1)
Tumbling Mills
583(2)
Rod Mills
583(1)
Ball Mills
583(1)
Autogenous and Semi-Autogenous Mills
584(1)
Cutting Machines
585(1)
Knives, Shears, and Wedges
585(1)
Saws
585(1)
Attrition Machines
585(4)
Disk Attrition Mills
586(1)
Buhrstone
586(1)
Mortar and Pestle Mill
587(1)
Swing Mill
587(1)
Disk Mill (or Colloid Mill)
588(1)
Petit Pulverizer
589(1)
Other Methods of Comminution
589(2)
Abrasion
589(1)
Thermal Comminution
590(1)
Electrical Comminution
590(1)
Microwave Comminution
590(1)
Ultrasonic Comminution
590(1)
Explosion
591(1)
Selection of Comminution Equipment for Planetary Sampling
591(4)
Single-Stage Comminution
591(3)
Double-Stage Comminution
594(1)
New Technologies and Innovations
595(1)
Review of Recent and Current Work on Comminution for Planetary Sampling
595(25)
Jaw Crusher
595(1)
Sample Processing Unit (SPU)
596(4)
Mechanized Sample Handler (MeSH): an Integrated Sample Crushing, Sieving, and Distribution System
600(20)
Operational Platforms
620(4)
Stationary Platforms
621(1)
Mobile Platforms
621(3)
Appendages
624(4)
Manipulators
624(4)
Sample Acquisition from Surface Platforms
628(4)
Terrain Sensing Techniques
628(4)
Sample Acquisition from Aerial Platforms
632(4)
Small-Body Sampling from Spacecraft
633(2)
Sampling from Aerobots
635(1)
Conclusion
636(7)
References
638(5)
Instruments for In Situ Sample Analysis
643(64)
Luther W. Beegle
Sabrina Feldman
Paul V. Johnson
Christopher B. Dreyer
Introduction
643(8)
Instrument Design Considerations
651(1)
Instrument Categories
652(4)
Geological Context
656(10)
Imaging and Spectroscopic Instruments
657(9)
Mineralogy Identification
666(8)
Mossbauer Spectroscopy
666(1)
Spectrometers (UV/VIS, Near-IR, Mid-IR, Far-IR, etc.)
667(2)
Differential Scanning Calorimetry
669(1)
Raman Spectroscopy
669(3)
Powder X-Ray Diffraction
672(1)
Contact X-Ray Diffraction
673(1)
Chemistry
674(11)
Laser Spectroscopy
675(2)
Ion- Selective Electrodes, pH, and Redox Meters
677(2)
X-Ray Spectroscopy
679(3)
Gas Chromatography/Mass Spectrometry (GC/MS)
682(3)
Biology
685(9)
Capillary Electrophoresis
686(1)
Liquid Chromatography and Ion Chromatography
687(2)
Microarrays
689(1)
Colorimetric and Fluorescence Assays in Solution
690(1)
Optical Sensors
690(1)
Non-Traditional Separation Approaches (e.g., Carbon Nanotubes)
691(1)
Ion Mobility
692(2)
Conclusion
694(13)
References
695(12)
Contamination Control and Planetary Protection
707(34)
J. Andy Spry
Introduction
707(1)
Contamination Control and Planetary Protection Similarities and Differences
707(5)
Mission Science as a Driver of Contamination Control
708(1)
Planetary Protection as a Mission Compliance Constraint
708(4)
Contamination Control for Drilling and Excavation Applications
712(7)
Quantifying Molecular Contamination Level Requirements
713(1)
Quantifying Particulate Contamination Level Requirements
714(2)
Contamination Control
716(3)
Planetary Protection for Drilling and Excavation Applications
719(12)
Forward (Outbound) Planetary Protection -- Requirements and Constraints
719(6)
Backward (Sample Return) Planetary Protection -- Requirements and Constraints
725(1)
Space Hardware Sterilization and Biodecontamination
726(5)
Contamination Control and Planetary Protection Case Studies
731(5)
Viking System Sterilization
731(1)
Beagle 2/Mars Express -- Extreme Sensitivity
732(2)
Phoenix -- a Biobarrier Solution
734(2)
Contamination Control and Planetary Protection Trends and Future Development
736(5)
References
737(4)
Drilling Capabilities, Challenges, and Future Possibilities
741(14)
Yoseph Bar-Cohen
Kris Zacny
Introduction
741(1)
Drilling Various Media in Challenging Environments
741(7)
Drilling in Extremely Cold Environments
742(1)
Drilling in Extremely Hot Environments
743(3)
Drilling Through the Seafloor Deep in the Ocean
746(1)
Drilling on Extraterrestrial Bodies
746(2)
Drilling via Rock Fracture -- Sampling Mechanisms
748(1)
Drilling Tools and Bits
749(1)
Challenges to Drilling Technologies
750(2)
Challenges to Modeling Drilling Processes
750(1)
Drilling in Planetary Conditions
750(1)
Sampling as the Objective of Planetary Exploration Missions
750(1)
Sample Analyzers and Related Challenges
751(1)
Acquisition of Volatiles
752(1)
Cleaning Drills to Avoid Cross-Contamination
752(1)
Conclusion
752(3)
References
753(2)
Index 755
Yoseph Bar-Cohen is Senior Scientist and Supervisor at the JPL. Part of his research focuses on artificial muscles. He (co) authored more than 300 papers and co-edited books. Two NASA Honor Award Medals prove his standing. Kris Zacny is Senior Research Scientist and Director of Drilling and Excavation Systems at Honeybee Robotics Spacecraft Mechanisms Corporation. Prior to this assignment, he served as engineer in the South African Mines and participated in two Arctic Expeditions where he performed drilling tests. The authors team the editors have recruited consist of top notch experts from Colorado School of Mines and JPL.