Atnaujinkite slapukų nuostatas

El. knyga: Drinfeld Modular Forms of Arbitrary Rank

Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

"This monograph provides a foundation for the theory of Drinfeld modular forms of arbitrary rank and is subdivided into three chapters. In the first chapter, we develop the analytic theory. Most of the work goes into defining and studying the -expansion of a weak Drinfeld modular form, whose coefficients are weak Drinfeld modular forms of rank . Based on that we give a precise definition of when a weak Drinfeld modular form is holomorphic at infinity and thus a Drinfeld modular form in the proper sense. In the second chapter, we compare the analytic theory with the algebraic one that was begun in a paper of the third author. For any arithmetic congruence subgroup and any integral weight we establish an isomorphism between the space of analytic modular forms with the space of algebraic modular forms defined in terms of the Satake compactification. From this we deduce the important result that this space is finite dimensional. In the third chapter, we construct and study some examples of Drinfeld modular forms. In particular, we define Eisenstein series, as well as the action of Hecke operators upon them, coefficient forms and discriminant forms. In the special case we show that all modular forms for are generated by certain weight one Eisenstein series, and all modular forms for and are generated by certain coefficient forms and discriminant forms. We also compute the dimensions of the spaces of such modular forms"-- Provided by publisher.
Chapters
Introduction
1. Analytic Theory
2. Comparison with the Algebraic Theory
3. Examples
Dirk Basson, University of Stellenbosch, South Africa, Florian Breuer, University of Newcastle, Callaghan, Australia, and University of Stellenbosch, South Africa.

Richard Pink, ETH Zurich, Switzerland.