Atnaujinkite slapukų nuostatas

El. knyga: Drones as Cyber-Physical Systems: Concepts and Applications for the Fourth Industrial Revolution

  • Formatas: EPUB+DRM
  • Išleidimo metai: 31-Jan-2019
  • Leidėjas: Springer Verlag, Singapore
  • Kalba: eng
  • ISBN-13: 9789811337413
  • Formatas: EPUB+DRM
  • Išleidimo metai: 31-Jan-2019
  • Leidėjas: Springer Verlag, Singapore
  • Kalba: eng
  • ISBN-13: 9789811337413

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book introduces the concept of using drones as a teaching tool to explore the fundamental principles, technology and applications of Cyber-Physical Systems (CPS).







A short introduction sets CPS in the context of the 4th industrial revolution, and describes various CPS technologies including self-driving cars, commercial intelligent drones and mobile robots, in which artificial intelligence routinely supports smarter decision-making. The core of the book then focuses on commercially available drones, the only available system offering the advantage of cyber-physical bridging through 3D autonomous dynamic flying in classroom conditions. Chapters describe drone technology, including location sensors and imaging systems. CPS theory is explained through typical drone flying procedures and do-it-yourself (DIY) aerial photography in which communication between sensors, actuators and controllers occurs through cyber-physical bi-directional bridging.









This book opens new possibilities in fostering 4th industrial revolution literacy, introducing relevant examples from readily available equipment, making core elements of cyber-physical bridging accessible. It is aimed primarily at those students who have an interest in CPS, drones and those from disciplines that are concerned with spatial information.
1 Introduction to the Fourth Industrial Revolution
1(20)
1.1 Introduction
1(1)
1.2 Concepts of the Fourth Industrial Revolution
2(3)
1.3 CPS Based Disruptive Technology (M2M → IoT → CPS)
5(3)
1.4 Comparison among Physical vs Cyber vs CPS Space
8(2)
1.5 Digital Twin
10(4)
1.6 Valuing Drones in Bi-directional Bridging
14(3)
1.7 Drones as a Tool to Ignite CPS Concept Learning
17(1)
1.8 Conclusion
18(1)
References
19(2)
2 Drone Flight Ready
21(38)
2.1 Introduction
21(1)
2.2 Definition of Drone
22(2)
2.3 History of Drone
24(2)
2.4 Advantages over Manned Aircraft
26(2)
2.5 Types of Drone
28(5)
2.5.1 Fixed Wings and Rotary Wings
28(2)
2.5.2 Nano Drone
30(1)
2.5.3 Military vs Civilian
31(1)
2.5.4 Various Classification Criteria
32(1)
2.6 Drone Industry Growth Background
33(2)
2.7 Drone Abuse and Regulation
35(5)
2.7.1 Drone Abuse Cases
35(2)
2.7.2 Drone Regulation
37(2)
2.7.3 Unrealistic Regulation
39(1)
2.8 Check Points for Drone Purchase
40(5)
2.8.1 Toy Class Drone
42(1)
2.8.2 Drone Adequate to Intermediate Level Users
42(1)
2.8.3 Racing/FPV Drone
43(1)
2.8.4 Professional Drones for Aerial Photography
44(1)
2.9 Drone Simulator and Primary Movements of Drone
45(5)
2.9.1 Drone Simulator
45(3)
2.9.2 Three Primary Movements of Drone
48(2)
2.10 Real Flight
50(5)
2.10.1 Checklist for Drone Status
50(1)
2.10.2 Right Location
50(2)
2.10.3 Flight Weather
52(1)
2.10.4 Seasonal Drone Flight
53(1)
2.10.5 Beginner Flight
54(1)
2.11 Conclusion
55(1)
References
56(3)
3 Cyber Systems
59(42)
3.1 Introduction
59(1)
3.2 Drone Cyber-Systems as CPS Components
60(1)
3.3 DIY Drone
61(2)
3.4 Basic Knowledge for the Drone Assembly
63(3)
3.5 Motor
66(3)
3.6 Electronic Speed Controller and Propeller
69(1)
3.7 Battery
70(5)
3.7.1 Essential Concepts Related to Battery
70(2)
3.7.2 Comparison of Lithium Ion Batteries and Lithium Ion Polymer Batteries
72(1)
3.7.3 Common Mistakes by Many Beginners
73(2)
3.8 Flight Controller
75(4)
3.9 Radio Control Transmitter
79(1)
3.10 Radio Communication
80(11)
3.10.1 Basic Knowledge for Radio Communication
81(3)
3.10.2 Various Network Techniques of the Wireless Controller
84(7)
3.11 Software
91(6)
3.11.1 Essential Background for Drone Software
91(2)
3.11.2 Hierarchy of Drone Software
93(1)
3.11.3 Types of Software
94(1)
3.11.4 Embedded System
95(1)
3.11.5 Updating the Firmware
96(1)
3.12 Conclusion
97(1)
References
98(3)
4 Physical Systems
101(42)
4.1 Introduction
101(1)
4.2 Importance of Sensors in CPS
102(8)
4.2.1 Sensors as CPS Components
102(1)
4.2.2 Defining Sensor
103(1)
4.2.3 Application Examples of Sensor
104(1)
4.2.4 Sensor Classification
105(2)
4.2.5 Physical Sensors in CPS
107(1)
4.2.6 Imaging versus Location Sensor
107(3)
4.3 Deep Learning
110(9)
4.3.1 Deep Learning versus Human Brain Sensor
110(4)
4.3.2 Deep Convolutional Neural Networks
114(3)
4.3.3 Supervised versus Unsupervised Learning
117(2)
4.4 Concepts of Spatial Information
119(5)
4.4.1 Comparison of Spatial Information versus Non-spatial Information
120(1)
4.4.2 Development History of Mapping Technology
121(1)
4.4.3 GIS (Geographic Information System)
122(2)
4.5 Concepts of Remote Sensing
124(11)
4.5.1 Comparison of Remote Sensing versus GIS
124(2)
4.5.2 Comparison of Remote Sensing versus Field Survey
126(4)
4.5.3 Spatial Information and Satellites
130(3)
4.5.4 Typical Procedures of Remote Sensing
133(2)
4.6 Self-Driving Car and Spatial Information
135(2)
4.7 Spatial Information as a Core Technology Operating CPS
137(2)
4.8 Conclusion
139(1)
References
140(3)
5 Location Sensors
143(34)
5.1 Introduction
144(1)
5.2 From Manual Navigation to Indoor Localization
144(2)
5.3 Satellite Navigation
146(4)
5.3.1 History of Satellite Navigation
146(1)
5.3.2 Satellite Navigation Principle
147(1)
5.3.3 Three Fundamental Segments of Satellite Navigation
147(1)
5.3.4 Triangulating Three GNSS Satellites
148(2)
5.4 GNSS Errors and Biases
150(4)
5.4.1 GNSS Satellite Errors
150(2)
5.4.2 Selective Availability
152(1)
5.4.3 Natural Phenomenon
153(1)
5.5 GNSS Signal Components
154(2)
5.6 GNSS Error Correction
156(10)
5.6.1 DGPS (Differential GPS)
157(1)
5.6.2 Kinematic Positioning and RTK
158(1)
5.6.3 Principle of A-GPS
159(3)
5.6.4 Ground Based Augmentation Systems (GBAS)
162(1)
5.6.5 Satellite Based Augmentation Systems (SBAS)
163(3)
5.7 GNSS and INS Integration
166(8)
5.7.1 INS (Inertial Navigation Systems)
166(1)
5.7.2 Comparison of INS versus GNSS
167(1)
5.7.3 Direct Geo-Referencing Through INS/GNSS Integration
168(2)
5.7.4 Accelerometer versus Gyroscope
170(4)
5.8 Conclusion
174(1)
References
175(2)
6 Imaging Sensors
177(50)
6.1 Introduction
177(1)
6.2 Four Sensor Selection Criteria
178(1)
6.3 Spatial Resolution
179(2)
6.3.1 Spatial Resolution, Pixel Size, and Scale
180(1)
6.4 Spectral Resolution
181(7)
6.5 Radiometric Resolution
188(2)
6.6 Temporal Resolution
190(4)
6.7 Drone Imagery as a Survey Tool for Hyper-Localized Targets
194(16)
6.7.1 Drone versus Traditional Remote Sensing
194(3)
6.7.2 Small Sensor Size of Drone Camera
197(3)
6.7.3 Low-Height Drone Photography (LHDP)
200(3)
6.7.4 Low-Height Drone Photography as an Alternative for In-situ Survey
203(2)
6.7.5 Decreasing Cost of Hyper or Multi-spectral Sensors
205(2)
6.7.6 Sunrise Calendar Temporal Resolution
207(3)
6.8 Drone Shooting and Related Observation
210(4)
6.9 Ortho-Photo Generation
214(8)
6.9.1 Bundle Block Adjustment
214(3)
6.9.2 Self-Calibrating Bundle Adjustment: Structure from Motion
217(5)
6.10 Conclusion
222(1)
References
222(5)
7 Valuing Cyber-Physical Bridging Intensity of Drone
227(30)
7.1 Introduction
227(1)
7.2 Importance of Sensor Fusion
228(6)
7.2.1 Concepts of Sensor Fusion
229(1)
7.2.2 Sensor Fusion in Self-Driving Car
230(1)
7.2.3 Location Sensors in Self-Driving Car
231(2)
7.2.4 Imaging Sensors in Self-Driving Car
233(1)
7.3 Drones as Cyber-Physical Bridging Systems
234(6)
7.3.1 Drone versus Area-Wide CPS as a Tool Conceptualizing Sensor Society
234(3)
7.3.2 Big-Data Collection Tool
237(1)
7.3.3 Flying IoT Mounting Device
238(2)
7.4 Autonomous Driving versus Flying
240(6)
7.4.1 Autonomous Flying
240(1)
7.4.2 New Road Infrastructure Specialized in Self-Driving
241(1)
7.4.3 Self-Driving Car and High Definition 3D-Real Time Map
242(2)
7.4.4 Realistic Potential of Autonomous Flying
244(2)
7.5 Automation Level of Drone
246(7)
7.5.1 Operating Methods Depending on Automation Levels
247(3)
7.5.2 Distributed/Collaborative Physical System (DCPS)
250(1)
7.5.3 Power Sources to Make the DCPS a Feasible Reality
251(2)
7.6 Conclusion
253(1)
References
254(3)
8 Futurology and Future Prospect of Drone CPS
257
8.1 Introduction
257(1)
8.2 Essential Background Concerning Futurology
258(5)
8.2.1 Our Daily Lives and Prediction
258(1)
8.2.2 Concepts of Futurology
259(1)
8.2.3 Historical Background for Futurology
260(1)
8.2.4 Major Forecasting Principles
261(2)
8.3 Future Prospect of Drone CPS
263(9)
8.3.1 Adam Smith versus Thomas Robert Malthus
263(1)
8.3.2 CPS as an Automated Invisible Hand: Drones as a New Necessity
264(2)
8.3.3 Exponential Speed of Drone Cyber-Physical Bridging
266(3)
8.3.4 Drones as an AI Instrument to Speed Up Anywhere CPS Economy
269(3)
8.4 Conclusion
272(1)
References
273
Jung-Sup Um received his PhD from the University of Aberdeen in 1997. He is currently a Professor of Geography at Kyungpook National University. His field of interest is applications of Cyber-Physical systems, focused on smart drones in relation to Remote Sensing and GIS. Prof. Um is Editor in Chief of journal, Spatial Information Research since 2015.