|
|
1 | (8) |
|
1.1 Background of Familial Models |
|
|
1 | (2) |
|
1.2 Background of Longitudinal Models |
|
|
3 | (3) |
|
|
6 | (3) |
|
2 Overview of Linear Fixed Models for Longitudinal Data |
|
|
9 | (20) |
|
|
10 | (4) |
|
2.1.1 Method of Moments (MM) |
|
|
10 | (1) |
|
2.1.2 Ordinary Least Squares (OLS) Method |
|
|
11 | (2) |
|
2.1.3 OLS Versus GLS Estimation Performance |
|
|
13 | (1) |
|
2.2 Estimation of β Under Stationary General Autocorrelation Structure |
|
|
14 | (5) |
|
2.2.1 A Class of Autocorrelations |
|
|
14 | (4) |
|
|
18 | (1) |
|
|
19 | (4) |
|
2.4 Alternative Modelling for Time Effects |
|
|
23 | (1) |
|
|
24 | (2) |
|
|
26 | (3) |
|
3 Overview of Linear Mixed Models for Longitudinal Data |
|
|
29 | (30) |
|
3.1 Linear Longitudinal Mixed Model |
|
|
30 | (6) |
|
3.1.1 GLS Estimation of β |
|
|
31 | (1) |
|
3.1.2 Moment Estimating Equations for σ 2 γ and ρl |
|
|
32 | (1) |
|
3.1.3 Linear Mixed Models for Rat Data |
|
|
33 | (3) |
|
3.2 Linear Dynamic Mixed Models for Balanced Longitudinal Data |
|
|
36 | (6) |
|
3.2.1 Basic Properties of the Dynamic Dependence Mixed Model (3.21) |
|
|
37 | (1) |
|
3.2.2 Estimation of the Parameters of the Dynamic Mixed Model (3.21) |
|
|
38 | (4) |
|
3.3 Further Estimation for the Parameters of the Dynamic Mixed Model |
|
|
42 | (13) |
|
3.3.1 GMM/IMM Estimation Approach |
|
|
43 | (5) |
|
3.3.2 GQL Estimation Approach |
|
|
48 | (4) |
|
3.3.3 Asymptotic Efficiency Comparison |
|
|
52 | (3) |
|
|
55 | (2) |
|
|
57 | (2) |
|
4 Familial Models for Count Data |
|
|
59 | (60) |
|
4.1 Poisson Mixed Models and Basic Properties |
|
|
60 | (3) |
|
4.2 Estimation for Single Random Effect Based Parametric Mixed Models |
|
|
63 | (31) |
|
4.2.1 Exact Likelihood Estimation and Drawbacks |
|
|
63 | (2) |
|
4.2.2 Penalized Quasi-Likelihood Approach |
|
|
65 | (3) |
|
4.2.3 Small Variance Asymptotic Approach: A Likelihood Approximation (LA) |
|
|
68 | (7) |
|
4.2.4 Hierarchical Likelihood (HL) Approach |
|
|
75 | (2) |
|
4.2.5 Method of Moments (MM) |
|
|
77 | (1) |
|
4.2.6 Generalized Quasi-Likelihood (GQL) Approach |
|
|
78 | (7) |
|
4.2.7 Efficiency Comparison |
|
|
85 | (6) |
|
4.2.8 A Health Care Data Utilization Example |
|
|
91 | (3) |
|
4.3 Estimation for Multiple Random Effects Based Parametric Mixed Models |
|
|
94 | (10) |
|
4.3.1 Random Effects in a Two-Way Factorial Design Setup |
|
|
94 | (1) |
|
4.3.2 One-Way Heteroscedastic Random Effects |
|
|
94 | (1) |
|
4.3.3 Multiple Independent Random Effects |
|
|
95 | (9) |
|
4.4 Semiparametric Approach |
|
|
104 | (7) |
|
4.4.1 Computations for μi, λi, Σi, and Ωi |
|
|
107 | (3) |
|
4.4.2 Construction of the Estimating Equation for β When σ 2 γ Is Known |
|
|
110 | (1) |
|
4.5 Monte Carlo Based Likelihood Estimation |
|
|
111 | (3) |
|
|
113 | (1) |
|
|
113 | (1) |
|
|
114 | (3) |
|
|
117 | (2) |
|
5 Familial Models for Binary Data |
|
|
119 | (62) |
|
5.1 Binary Mixed Models and Basic Properties |
|
|
120 | (4) |
|
5.1.1 Computational Formulas for Binary Moments |
|
|
123 | (1) |
|
5.2 Estimation for Single Random Effect Based Parametric Mixed Models |
|
|
124 | (22) |
|
5.2.1 Method of Moments (MM) |
|
|
124 | (2) |
|
5.2.2 An Improved Method of Moments (IMM) |
|
|
126 | (5) |
|
5.2.3 Generalized Quasi-Likelihood (GQL) Approach |
|
|
131 | (4) |
|
5.2.4 Maximum Likelihood (ML) Estimation |
|
|
135 | (3) |
|
5.2.5 Asymptotic Efficiency Comparison |
|
|
138 | (5) |
|
5.2.6 COPD Data Analysis: A Numerical Illustration |
|
|
143 | (3) |
|
5.3 Binary Mixed Models with Multidimensional Random Effects |
|
|
146 | (18) |
|
5.3.1 Models in Two-Way Factorial Design Setup and Basic Properties |
|
|
146 | (3) |
|
5.3.2 Estimation of Parameters |
|
|
149 | (11) |
|
5.3.3 Salamander Mating Data Analysis |
|
|
160 | (4) |
|
5.4 Semiparametric Approach |
|
|
164 | (5) |
|
|
164 | (2) |
|
5.4.2 A Marginal Quasi-Likelihood (MQL) Approach |
|
|
166 | (1) |
|
5.4.3 Asymptotic Efficiency Comparison: An Empirical Study |
|
|
167 | (2) |
|
5.5 Monte Carlo Based Likelihood Estimation |
|
|
169 | (1) |
|
|
169 | (3) |
|
|
172 | (2) |
|
|
174 | (7) |
|
6 Longitudinal Models for Count Data |
|
|
181 | (60) |
|
|
182 | (1) |
|
6.2 Marginal Model Based Estimation of Regression Effects |
|
|
183 | (2) |
|
6.3 Correlation Models for Stationary Count Data |
|
|
185 | (3) |
|
6.3.1 Poisson AR(1) Model |
|
|
186 | (1) |
|
6.3.2 Poisson MA(1) Model |
|
|
187 | (1) |
|
6.3.3 Poisson Equicorrelation Model |
|
|
187 | (1) |
|
6.4 Inferences for Stationary Correlation Models |
|
|
188 | (13) |
|
6.4.1 Likelihood Approach and Complexity |
|
|
188 | (1) |
|
|
189 | (7) |
|
6.4.3 GEE Approach and Limitations |
|
|
196 | (5) |
|
6.5 Nonstationary Correlation Models |
|
|
201 | (8) |
|
6.5.1 Nonstationary Correlation Models with the Same Specified Marginal Mean and Variance Functions |
|
|
202 | (3) |
|
6.5.2 Estimation of Parameters |
|
|
205 | (2) |
|
|
207 | (2) |
|
6.6 More Nonstationary Correlation Models |
|
|
209 | (8) |
|
6.6.1 Models with Variable Marginal Means and Variances |
|
|
209 | (2) |
|
6.6.2 Estimation of Parameters |
|
|
211 | (2) |
|
|
213 | (2) |
|
6.6.4 Estimation and Model Selection: A Simulation Example |
|
|
215 | (2) |
|
6.7 A Data Example: Analyzing Health Care Utilization Count Data |
|
|
217 | (2) |
|
6.8 Models for Count Data from Longitudinal Adaptive Clinical Trials |
|
|
219 | (12) |
|
6.8.1 Adaptive Longitudinal Designs |
|
|
220 | (4) |
|
6.8.2 Performance of the SLPW and BRW Designs For Treatment Selection: A Simulation Study |
|
|
224 | (3) |
|
6.8.3 Weighted GQL Estimation for Treatment Effects and Other Regression Parameters |
|
|
227 | (4) |
|
|
231 | (3) |
|
|
234 | (2) |
|
|
236 | (5) |
|
7 Longitudinal Models for Binary Data |
|
|
241 | (80) |
|
|
243 | (2) |
|
7.1.1 Marginal Model Based Estimation for Regression Effects |
|
|
244 | (1) |
|
7.2 Some Selected Correlation Models for Longitudinal Binary Data |
|
|
245 | (11) |
|
7.2.1 Bahadur Multivariate Binary Density (MBD) Based Model |
|
|
246 | (3) |
|
7.2.2 Kanter Observation-Driven Dynamic (ODD) Model |
|
|
249 | (3) |
|
7.2.3 A Linear Dynamic Conditional Probability (LDCP) Model |
|
|
252 | (2) |
|
7.2.4 A Numerical Comparison of Range Restrictions for Correlation Index Parameter Under Stationary Binary Models |
|
|
254 | (2) |
|
7.3 Low-Order Autocorrelation Models for Stationary Binary Data |
|
|
256 | (10) |
|
|
256 | (1) |
|
|
256 | (3) |
|
7.3.3 Binary Equicorrelation (EQC) Model |
|
|
259 | (1) |
|
7.3.4 Complexity in Likelihood Inferences Under Stationary Binary Correlation Models |
|
|
260 | (1) |
|
7.3.5 GQL Estimation Approach |
|
|
261 | (3) |
|
7.3.6 GEE Approach and Its Limitations for Binary Data |
|
|
264 | (2) |
|
7.4 Inferences in Nonstationary Correlation Models for Repeated Binary Data |
|
|
266 | (8) |
|
7.4.1 Nonstationary AR(1) Correlation Model |
|
|
266 | (2) |
|
7.4.2 Nonstationary MA(1) Correlation Model |
|
|
268 | (1) |
|
7.4.3 Nonstationary EQC Model |
|
|
269 | (1) |
|
7.4.4 Nonstationary Correlations Based GQL Estimation |
|
|
270 | (3) |
|
|
273 | (1) |
|
|
274 | (4) |
|
7.5.1 Introduction to the SLID Data |
|
|
274 | (2) |
|
7.5.2 Analysis of the SLID Data |
|
|
276 | (2) |
|
7.6 Application to an Adaptive Clinical Trial Setup |
|
|
278 | (12) |
|
7.6.1 Binary Response Based Adaptive Longitudinal Design |
|
|
278 | (7) |
|
7.6.2 Construction of the Adaptive Design Weights Based Weighted GQL Estimation |
|
|
285 | (5) |
|
7.7 More Nonstationary Binary Correlation Models |
|
|
290 | (24) |
|
7.7.1 Linear Binary Dynamic Regression (LBDR) Model |
|
|
290 | (5) |
|
7.7.2 A Binary Dynamic Logit (BDL) Model |
|
|
295 | (12) |
|
7.7.3 Application of the Binary Dynamic Logit (BDL) Model in an Adaptive Clinical Trial Setup |
|
|
307 | (7) |
|
|
314 | (2) |
|
|
316 | (2) |
|
|
318 | (3) |
|
8 Longitudinal Mixed Models for Count Data |
|
|
321 | (68) |
|
8.1 A Conditional Serially Correlated Model |
|
|
321 | (2) |
|
|
323 | (25) |
|
8.2.1 Estimation of the Regression Effects β |
|
|
324 | (8) |
|
8.2.2 Estimation of the Random Effects Variance σ2γ |
|
|
332 | (5) |
|
8.2.3 Estimation of the Longitudinal Correlation Parameter ρ |
|
|
337 | (2) |
|
|
339 | (7) |
|
8.2.5 An Illustration: Analyzing Health Care Utilization Count Data by Using Longitudinal Fixed and Mixed Models |
|
|
346 | (2) |
|
8.3 A Mean Deflated Conditional Serially Correlated Model |
|
|
348 | (14) |
|
8.4 Longitudinal Negative Binomial Fixed Model and Estimation of Parameters |
|
|
362 | (13) |
|
8.4.1 Inferences in Stationary Negative Binomial Correlation Models |
|
|
363 | (4) |
|
8.4.2 A Data Example: Analyzing Epileptic Count Data by Using Poisson and Negative Binomial Longitudinal Models |
|
|
367 | (2) |
|
8.4.3 Nonstationary Negative Binomial Correlation Models and Estimation of Parameters |
|
|
369 | (6) |
|
|
375 | (2) |
|
|
377 | (2) |
|
|
379 | (10) |
|
9 Longitudinal Mixed Models for Binary Data |
|
|
389 | (34) |
|
9.1 A Conditional Serially Correlated Model |
|
|
390 | (6) |
|
9.1.1 Basic Properties of the Model |
|
|
390 | (2) |
|
9.1.2 Parameter Estimation |
|
|
392 | (4) |
|
9.2 Binary Dynamic Mixed Logit (BDML) Model |
|
|
396 | (19) |
|
|
398 | (5) |
|
|
403 | (2) |
|
9.2.3 Efficiency Comparison: GMM Versus GQL |
|
|
405 | (4) |
|
9.2.4 Fitting the Binary Dynamic Mixed Logit Model to the SLID data |
|
|
409 | (2) |
|
9.2.5 GQL Versus Maximum Likelihood (ML) Estimation for BDML Model |
|
|
411 | (4) |
|
9.3 A Binary Dynamic Mixed Probit (BDMP) Model |
|
|
415 | (5) |
|
9.3.1 GQL Estimation for BDMP Model |
|
|
416 | (1) |
|
9.3.2 GQL Estimation Performance for BDMP Model: A Simulation Study |
|
|
417 | (3) |
|
|
420 | (1) |
|
|
421 | (2) |
|
10 Familial Longitudinal Models for Count Data |
|
|
423 | (32) |
|
10.1 An Autocorrelation Class of Familial Longitudinal Models |
|
|
423 | (6) |
|
10.1.1 Marginal Mean and Variance |
|
|
424 | (1) |
|
10.1.2 Nonstationary Autocorrelation Models |
|
|
425 | (4) |
|
10.2 Parameter Estimation |
|
|
429 | (17) |
|
10.2.1 Estimation of Parameters Under Conditional AR(1) Model |
|
|
430 | (9) |
|
10.2.2 Performance of the GQL Approach: A Simulation Study |
|
|
439 | (7) |
|
10.3 Analyzing Health Care Utilization Data by Using GLLMM |
|
|
446 | (3) |
|
10.4 Some Remarks on Model Identification |
|
|
449 | (2) |
|
10.4.1 An Exploratory Identification |
|
|
450 | (1) |
|
10.4.2 A Further Improved Identification |
|
|
451 | (1) |
|
|
451 | (2) |
|
|
453 | (2) |
|
11 Familial Longitudinal Models for Binary Data |
|
|
455 | (34) |
|
|
456 | (12) |
|
11.1.1 Conditional-Conditional (CC) AR(1) Model |
|
|
456 | (2) |
|
|
458 | (1) |
|
|
459 | (1) |
|
11.1.4 Estimation of the AR(1) Model Parameters |
|
|
460 | (8) |
|
11.2 Application to Waterloo Smoking Prevention Data |
|
|
468 | (3) |
|
11.3 Family Based BDML Models for Binary Data |
|
|
471 | (12) |
|
11.3.1 FBDML Model and Basic Properties |
|
|
472 | (2) |
|
11.3.2 Quasi-Likelihood Estimation in the Familial Longitudinal Setup |
|
|
474 | (5) |
|
11.3.3 Likelihood Based Estimation |
|
|
479 | (4) |
|
|
483 | (4) |
|
|
487 | (2) |
Index |
|
489 | |