Atnaujinkite slapukų nuostatas

El. knyga: Dynamical and Geometric Aspects of Hamilton-Jacobi and Linearized Monge-Ampere Equations: VIASM 2016

  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Mathematics 2183
  • Išleidimo metai: 14-Jun-2017
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319542089
  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Mathematics 2183
  • Išleidimo metai: 14-Jun-2017
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319542089

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Consisting of two parts, the first part of this volume is an essentially self-contained exposition of the geometric aspects of local and global regularity theory for the Monge–Ampère and linearized Monge–Ampère equations. As an application, we solve the second boundary value problem of the prescribed affine mean curvature equation, which can be viewed as a coupling of the latter two equations. Of interest in its own right, the linearized Monge–Ampère equation also has deep connections and applications in analysis, fluid mechanics and geometry, including the semi-geostrophic equations in atmospheric flows, the affine maximal surface equation in affine geometry and the problem of finding Kahler metrics of constant scalar curvature in complex geometry.  

Among other topics, the second part provides a thorough exposition of the large time behavior and discounted approximation of Hamilton–Jacobi equations, which have received much attention in the last two decades, and a new approach to the subject, the nonlinear adjoint method, is introduced. The appendix offers a short introduction to the theory of viscosity solutions of first-order Hamilton–Jacobi equations.

 

Part I The Second Boundary Value Problem of the Prescribed Affine Mean Curvature Equation and Related Linearized Monge-Ampere Equation
Nam Q. Le
1 The Affine Bernstein and Boundary Value Problems
7(28)
2 The Linearized Monge-Ampere Equation
35(38)
3 The Monge-Ampere Equation
73(56)
Part II Dynamical Properties of Hamilton---Jacobi Equations via the Nonlinear Adjoint Method: Large Time Behavior and Discounted Approximation
Hiroyoshi Mitake
Hung V. Tran
4 Ergodic Problems for Hamilton--Jacobi Equations
129(12)
5 Large Time Asymptotics of Hamilton--Jacobi Equations
141(36)
6 Selection Problems in the Discounted Approximation Procedure
177(30)
7 Appendix of Part II
207