Atnaujinkite slapukų nuostatas

El. knyga: Dynamical Systems, Bifurcation Analysis and Applications: Penang, Malaysia, August 6-13, 2018

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book is the result of ?Southeast Asian Mathematical Society (SEAMS) School 2018 on Dynamical Systems and Bifurcation Analysis (DySBA). It addresses the latest developments in the field of dynamical systems, and highlights the importance of numerical continuation studies in tracking both stable and unstable steady states and bifurcation points to gain better understanding of the dynamics of the systems. 

The SEAMS School 2018 on DySBA was held in Penang from 6th to 13th August at the School of Mathematical Sciences, Universiti Sains Malaysia.The SEAMS Schools are part of series of intensive study programs that aim to provide opportunities for an advanced learning experience in mathematics via planned lectures, contributed talks, and hands-on workshop.

This book will appeal to those postgraduates, lecturers and researchers working in the field of dynamical systems and their applications. Senior undergraduates in Mathematics will also find it useful.
A. A. M. Daud, Mathematical Modeling and Stability Analysis of
Population Dynamics.- T. K. Ang, H. M. Safuan, U. A. M. Roslan, and M. H.
Mohd, Optimal Harvesting Regions of a Polluted Predator-prey Fishery
System.- J. M. Tuwankotta, E. Harjanto and L. Owen, Dynamics and Bifurcations
in a Dynamical System of a Predator-Prey Type with Nonmonotonic Response
Function and Time-Periodic Variation.- J. Addawe, Z. Baoanan, and R.
Addawe, Modeling and experimental data on the dynamics of predation of
rice plants and weeds by Golden Apple Snail (Pomacea canaliculata).- M. A. M.
Abdelaziz, A. I. Ismail, F. A. Abdullah and M. H. Mohd, Analysis of a
discrete-time fractional order SIR epidemic model for childhood diseases.- J.
M. R. Macalalag, E. P. de Lara-Tuprio, and T. R. Y. Teng, A Tuberculosis
Epidemic Model with Latent and Treatment Period Time Delays.- M. H.
Mohd, Numerical Bifurcation and Stability Analyses of Partial
Differential Equations with Applications to Competitive System in
Ecology.- U. A. M. Roslan and M. T. M. Lutfi, Global Stability Index for an
Attractor with Riddled Basin in A Two-Species Competition System.- A. Nordin,
M. S. M. Noorani, and S. C. Dzul-Kifii, Counting Closed Orbits in Discrete
Dynamical Systems.- O. J. Omaiye, M. H. Mohd, Computational Dynamical Systems
Using XPPAUT.- L. Owen and E. Harjanto, A basic manual for AUT0-07p in
computing bifurcation diagrams of a predator-prey model.- J. A.
Collera, Numerical Continuation and Bifurcation Analysis in a
Harvested Predator-Prey Model with Time Delay using DDE-Biftool.