Atnaujinkite slapukų nuostatas

El. knyga: Earth Observation Satellites: Task Planning and Scheduling

  • Formatas: EPUB+DRM
  • Išleidimo metai: 04-Sep-2023
  • Leidėjas: Springer Verlag, Singapore
  • Kalba: eng
  • ISBN-13: 9789819935659
  • Formatas: EPUB+DRM
  • Išleidimo metai: 04-Sep-2023
  • Leidėjas: Springer Verlag, Singapore
  • Kalba: eng
  • ISBN-13: 9789819935659

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book highlights the practical models and algorithms of earth observation satellite (EOS) task scheduling. EOS task scheduling is a typical complex combinatorial optimization problem with NP-Hard computational complexity. It is a key technology in aerospace scheduling and has attracted global attention. Based on the actual needs of the EOS operation control center, the book summarizes and reviews the state of the art in this research and engineering field. In both deterministic scenarios and dynamic scenarios, the book elaborates on the typical models, algorithms, and systems in centralized, distributed, and onboard autonomous task scheduling. The book also makes an outlook on the promising technologies for EOS task planning and scheduling in the future. It is a valuable reference for professionals, researchers, and students in satellite-related technology. 



This book is a translation of an original Chinese edition. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation.


Hao Chen





Dr. Hao Chen is currently a professor at the National University of Defense Technology, China. His research interests include data mining, machine learning, and evolutionary computation. 





Shuang Peng





Dr. Shuang Peng is currently an assistant professor at the National University of Defense Technology, China. His research interests include satellite intelligent scheduling, machine learning, and evolutionary computation. 





Chun Du





Dr. Chun Du is currently an associate professor at the National University of Defense Technology, China. His research interests include machine learning, machine vision, and remote sensing.  Jun Li





Dr. Jun Li is currently a professor at the National University of Defense Technology, China. His research interests include management and analysis of big data, and spatial information system.