Atnaujinkite slapukų nuostatas

El. knyga: Effect of Disorder and Defects in Ion-Implanted Semiconductors: Electrical and Physiochemical Characterization

Volume editor (University of Cyprus), Series edited by (Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg, Germany), Series edited by (WILLARDSON CONSULTING SPOKANE, WASHINGTON), Volume editor (Labaratoire de Physique des Composants a Semiconducteur)
  • Formatas: PDF+DRM
  • Serija: Semiconductors and Semimetals
  • Išleidimo metai: 23-May-1997
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9780080864426
  • Formatas: PDF+DRM
  • Serija: Semiconductors and Semimetals
  • Išleidimo metai: 23-May-1997
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9780080864426

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Defects in ion-implanted semiconductors are important and will likely gain increased importance in the future as annealing temperatures are reduced with successive IC generations. Novel implant approaches, such as MdV implantation, create new types of defects whose origin and annealing characteristics will need to be addressed. Publications in this field mainly focus on the effects of ion implantation on the material and the modification in the implanted layer afterhigh temperature annealing.
Electrical and Physicochemical Characterization focuses on the physics of the annealing kinetics of the damaged layer. An overview of characterization tehniques and a critical comparison of the information on annealing kinetics is also presented.

Key Features
* Provides basic knowledge of ion implantation-induced defects
* Focuses on physical mechanisms of defect annealing
* Utilizes electrical and physico-chemical characterization tools for processed semiconductors
* Provides the basis for understanding the problems caused by the defects generated by implantation and the means for their characterization and elimination

Daugiau informacijos

Key Features * Provides basic knowledge of ion implantation-induced defects * Focuses on physical mechanisms of defect annealing * Utilizes electrical and physico-chemical characterization tools for processed semiconductors * Provides the basis for understanding the problems caused by the defects generated by implantation and the means for their characterization and elimination
LIST OF CONTRIBUTORS xi(2) FOREWORD xiii(4) PREFACE xvii
Chapter 1 Ion Implantation into Semiconductors: Historical Perspectives 1(31) Heiner Ryssel I. Introduction 1(1) II. Early History 2(3) III. Ion Implanters 5(10)
1. Development of Ion Implanters 5(3)
2. Acceleration and Mass Separation 8(3)
3. Beam Scanning and Dosimetry 11(2)
4. Contamination 13(1)
5. Implanter Trends 14(1) IV. Metal-Oxide Semiconductor Devices 15(7)
1. Self-aligned Gate Process 15(1)
2. Threshold Adjust 16(2)
3. Well Doping 18(2)
4. Drain Engineering 20(1)
5. Metal-Oxide Semiconductor Trends 21(1) V. Bipolar Devices 22(4)
1. Arsenic Emitter 23(1)
2. Boron Base 24(1)
3. Bipolar Trends 25(1) VI. Conclusions 26(1) References 26(6)
Chapter 2 Electronic Stopping Power for Energetic Ions in Solids 32(23) You-Nian Wang Teng-Cai Ma I. Introduction 32(1) II. General Theory 33(3)
1. Electron-Gas Model 33(1)
2. Dielectric Function 34(1)
3. Local Density Approximation 35(1) III. Electronic Stopping Power for Protons 36(6)
1. Method of Numerical Calculation 36(1)
2. Low- and High-Velocity Approximations 37(1)
3. Fitted Formula and Comparison with Experimental Data 38(4) IV. Electronic Stopping Power for Heavy Ions 42(5)
1. The Brandt-Kitagawa Model for Charge Distribution of Projectile 42(2)
2. Effective Stopping Charges 44(1)
3. Comparison with Experimental Data 45(2) V. Electronic Stopping Power of Molecular Ions 47(5)
1. Coulomp Explosion 47(2)
2. The Vicinage Effect in the Stopping Power 49(3) VI. Summary 52(1) References 53(2)
Chapter 3 Solid Effect on the Electronic Stopping of Crystalline Target and Application of Range Estimation 55(30) Sachiko T. Nakagawa I. Introduction 55(3) II. Local Density Approximation for Binary Collision 58(6)
1. Electron Density of Solid-State Target Atoms 58(1)
2. Local Density Approximation for the Nuclear Stopping Power 59(2)
3. Local Density Approximation for the Electronic Stopping Power 61(3) III. Impact Parameter-Dependence of the Electronic Stopping Power in Crystalline Solids 64(5)
1. Original Oen-Robinson Model and Innovation 64(1)
2. Determination of the Impact Parameter-Dependence of the Electronic Stopping Power in a Cluster 65(3)
3. Solid Effects on the Electronic Stopping Power from Cluster Calculation 68(1) IV. Electronic Stopping Power of Chemical Compounds 69(3)
1. Axial Channeling in Zinc-blende 69(2)
2. Combination Rule as an Alternative to the Bragg Rule for Electronic Stopping Power of Compounds 71(1) V. Electronic Stopping Power and Range Profiles via Computer Simulations 72(6)
1. Influence of the Electronic Stopping Power on Range Profiles 73(3)
2. Solid-Effects on Electronic Stopping Power from Computer Simulations 76(2) VI. Concluding Remarks 78(3) References 81(4)
Chapter 4 Ion Beams in Amorphous Semiconductor Research 85(44) G. Muller S. Kalbitzer G. N. Greaves
1. Introduction 85(2) II. Ion Beam Production of Amorphous Silicon 87(19)
1. Impact of Disorder on Doping, Electronic Transport, and Optical Properties 87(8)
2. Irreversible Ordering Phenomena in Undoped Amorphous Material 95(4)
3. Structural Relaxation and Thermal Crystallization of Doped Material 99(6)
4. Effects of Hydrogenation and Fluorination 105(1) III. Ion Beam Doping of Plasma-Deposited Amorphous Silicon 106(15)
1. Gas Phase and Ion Implantation Doping 106(4)
2. Doping Mechanism in Hydrogenated Material 110(5)
3. Generation and Annealing of Implantation Damage 115(6) IV. Structural and Configurational Changes in Amorphous Silicon 121(2)
1. Changes in Pure Material 121(1)
2. Changes in Hydrogenated Material 122(1) References 123(6)
Chapter 5 Sheet and Spreading Resistance Analysis of Ion Implanted and Annealed Semiconductors 129(36) Jumana Boussey-Said I. Introduction 129(1) II. Sheet Resistance Measurement 130(5)
1. Collinear Four-Point Probe Method 131(2) Sheet Resistance of Arbitrarily Shaped Samples 133(2) III. Spreading Resistance Probes Profiling 135(8)
1. Priniciple of the Spreading Resistance Profiling Measurements 136(2)
2. Extraction of Resistivity Profiles from Spreading Resistance Raw Data 138(5) IV. Applications 143(18)
1. High-Dose and High-Energy Arsenic-Implanted Silicon Layers 143(9)
2. Low-Energy Boron and Boron Fluoride Implantation in a Preamorphized Silicon Substrate 152(9) V. Summary 161(1) References 162(3)
Chapter 6 Studies of the Stripping Hall Effect in Ion-Implanted Silicon 165(30) M. L. Polignano G. Queirolo I. Introduction 165(1) II. Survey of Basic Theory 166(9)
1. Resistivity Measurements 168(2)
2. Mobility Measurements 170(2)
3. Carrier and Mobility Profiling 172(3) III. Applications of the Technique 175(17)
1. Experimental Details 175(1)
2. High Fluence Boron Fluride-Implanted Layers 175(11)
3. Measurements on Shallows, Heavily Arsenic-Doped Layers: Solubility and Mobility Data 186(3)
4. Active Dopant Concentration in Phosphorus-Doped Polycrystalline Layers 189(3) Conclusions 192(1) References 193(2)
Chapter 7 Transmission Electron Microscopy Analyses 195(44) J. Stoemenos I. Introduction 195(1) II. Transmission Electron Microscopy 196(5)
1. Imaging Ray Path in Transmission Electron Microscopy 196(3)
2. Crystallographic Structure and Chemical Composition 199(1)
3. Specimen Preparation 199(2) III. Defects Produced by Ion Implantation, Transmission Electron Microscopy 201(9)
1. Microelectronics and Microscopy 201(5)
2. Evolution of End-of-Range Defects 206(2)
3. End-of-Range Defects and Electrical Properties 208(1)
4. Kinetics of End-of-Range Defects 208(2) IV. Implantation Using Molecular Ions 210(2) V. Implantation Conditions Inhibiting the Formation of End-of-Range Defects 212(4) VI. Material Modification by Ion Beam Synthesis 216(14)
1. Silicon Separation by Implanted Oxygen (SIMOX) 216(11)
2. B-Silicon Carbide Formed by Carbon Implantation into Silicon 227(3) VII. Ion-Beam-Induced Epitaxial Crystallization 230(5) VIII. Closing Remarks 235(1) References 235(4)
Chapter 8 Rutherford Backscattering Studies of Ion Implanted Semiconductors 239(22) Roberta Nipoti Marco Servidori I. Introduction 239(1) II. Measurement of Disorder Depth Profiles by RBS-Channeling 240(8) III. Typical Results for Silicon and Silicon Carbide 248(10)
1. Silicon 248(7)
2. Silicon Carbide 255(3) References 258(3)
Chapter 9 X-ray Diffraction Techniques 261(22) P. Zaumseil Introduction 261(1) II. Basic Aspects of Crystal Lattice Modification Due to Ion-Implantation 262(6)
1. Implantation-Induced Variation of the Lattice Parameters 263(2)
2. Dopant Incorporation 265(1)
3. Defect Generation During Annealing 266(2) III. X-ray Methods to Analyze Implanted Samples 268(6)
1. Simulation of the Reflection Curve of a Disturbed Crystal 268(3)
2. Experimental Techniques 271(2)
3. Limitations of X-ray Diffraction Techniques 273(1) IV. Examples of Special Applications 274(6)
1. Determination of Dislocation Loop Size and Density in Implanted and Annealed Silicon 274(2)
2. Arsenic Implantation and Annealing 276(2)
3. Characterization of Boron-Implanted and Annealed Silicon 278(2) V. Summary 280(1) References 281(2) Index 283(4) CONTENTS OF VOLUMES IN THIS SERIES 287