Atnaujinkite slapukų nuostatas

Eigenvalue Problems: Algorithms, Software and Applications in Petascale Computing: EPASA 2015, Tsukuba, Japan, September 2015 1st ed. 2017 [Kietas viršelis]

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formatas: Hardback, 313 pages, aukštis x plotis: 235x155 mm, weight: 784 g, 43 Illustrations, color; 52 Illustrations, black and white; X, 313 p. 95 illus., 43 illus. in color., 1 Hardback
  • Serija: Lecture Notes in Computational Science and Engineering 117
  • Išleidimo metai: 04-Jan-2018
  • Leidėjas: Springer International Publishing AG
  • ISBN-10: 3319624245
  • ISBN-13: 9783319624242
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 313 pages, aukštis x plotis: 235x155 mm, weight: 784 g, 43 Illustrations, color; 52 Illustrations, black and white; X, 313 p. 95 illus., 43 illus. in color., 1 Hardback
  • Serija: Lecture Notes in Computational Science and Engineering 117
  • Išleidimo metai: 04-Jan-2018
  • Leidėjas: Springer International Publishing AG
  • ISBN-10: 3319624245
  • ISBN-13: 9783319624242
Kitos knygos pagal šią temą:

This book provides state-of-the-art and interdisciplinary topics on solving matrix eigenvalue problems, particularly by using recent petascale and upcoming post-petascale supercomputers. It gathers selected topics presented at the International Workshops on Eigenvalue Problems: Algorithms; Software and Applications, in Petascale Computing (EPASA2014 and EPASA2015), which brought together leading researchers working on the numerical solution of matrix eigenvalue problems to discuss and exchange ideas – and in so doing helped to create a community for researchers in eigenvalue problems. The topics presented in the book, including novel numerical algorithms, high-performance implementation techniques, software developments and sample applications, will contribute to various fields that involve solving large-scale eigenvalue problems.

An Error Resilience Strategy of a Complex Moment-Based Eigensolver:
Akira Imakura, Yasunori Futamura, and Tetsuya Sakurai.- Numerical Integral
Eigensolver for a Ring Region on the Complex Plane: Yasuyuki Maeda, Tetsuya
Sakurai, James Charles, Michael Povolotskyi, Gerhard Klimeck, and Jose E.
Roman.- A Parallel Bisection and Inverse Iteration Solver for a Subset of
Eigenpairs of Symmetric Band Matrices: Hiroyuki Ishigami, Hidehiko Hasegawa,
Kinji Kimura, and Yoshimasa Nakamura.- The Flexible ILU Preconditioning for
Solving Large Nonsymmetric Linear Systems of Equations: Takatoshi Nakamura
and Takashi Nodera.- Improved Coefficients for Polynomial Filtering in ESSEX:
Martin Galgon, Lukas Krämer, Bruno Lang, Andreas Alvermann, Holger Fehske,
Andreas Pieper, Georg Hager, Moritz Kreutzer, Faisal Shahzad, Gerhard
Wellein, Achim Basermann, Melven Röhrig-Zöllner, and Jonas Thies.-
Eigenspectrum Calculation of the O(a)-improved Wilson-Dirac Operator in
Lattice QCD using the Sakurai-Sugiura Method: Hiroya Suno, Yoshifumi
Nakamura, Ken-Ichi Ishikawa, Yoshinobu Kuramashi, Yasunori Futamura, Akira
Imakura, and Tetsuya Sakurai.- Properties of Definite BetheSalpeter
Eigenvalue Problems: Meiyue Shao and Chao Yang.- Preconditioned Iterative
Methods for Eigenvalue Counts: Eugene Vecharynski and Chao Yang.- Comparison
of Tridiagonalization Methods using High-precision Arithmetic with MuPAT:
Ryoya Ino, Kohei Asami, Emiko Ishiwata, and Hidehiko Hasegawa.- Computation
of Eigenvectors for a Specially Structured Banded Matrix: Hiroshi Takeuchi,
Kensuke Aihara, Akiko Fukuda, and Emiko Ishiwata.- Monotonic Convergence to
Eigenvalues of Totally Nonnegative Matrices in an Integrable variant of the
Discrete Lotka-Volterra System: Akihiko Tobita, Akiko Fukuda, Emiko Ishiwata,
Masashi Iwasaki, and Yoshimasa Nakamura.- Accuracy Improvement of the Shifted
Block BiCGGR Method for Linear Systems with Multiple Shifts and Multiple
Right-Hand Sides: Hiroto Tadano, Shusaku Saito, and Akira Imakura.-
Memory-Saving Technique for the SakuraiSugiura Eigenvalue Solver using the
Shifted Block Conjugate Gradient Method: Yasunori Futamura and Tetsuya
Sakurai.- Filter Diagonalization Method by Using a Polynomial of a Resolvent
as the Filter for a Real Symmetric-Definite Generalized Eigenproblem: Hiroshi
Murakami.- Off-Diagonal Perturbation, First-Order Approximation and Quadratic
Residual Bounds for Matrix Eigenvalue Problems: Yuji Nakatsukasa.- An
Elementary Derivation of the Projection Method for Nonlinear Eigenvalue
Problems Based on Complex Contour Integration: Yusaku Yamamoto.- Fast
Multipole Method as a Matrix-Free Hierarchical Low-Rank Approximation: Rio
Yokota, Huda Ibeid, and David Keyes.- Recent Progress in Linear Response
Eigenvalue Problems: Zhaojun Bai and Ren-Cang Li.