Atnaujinkite slapukų nuostatas

Electrodynamics and Optics 2019 ed. [Kietas viršelis]

  • Formatas: Hardback, 449 pages, aukštis x plotis: 279x210 mm, weight: 1447 g, 728 Illustrations, color; 11 Illustrations, black and white; XII, 449 p. 739 illus., 728 illus. in color., 1 Hardback
  • Serija: Undergraduate Lecture Notes in Physics
  • Išleidimo metai: 16-Sep-2019
  • Leidėjas: Springer Nature Switzerland AG
  • ISBN-10: 3030022897
  • ISBN-13: 9783030022891
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 449 pages, aukštis x plotis: 279x210 mm, weight: 1447 g, 728 Illustrations, color; 11 Illustrations, black and white; XII, 449 p. 739 illus., 728 illus. in color., 1 Hardback
  • Serija: Undergraduate Lecture Notes in Physics
  • Išleidimo metai: 16-Sep-2019
  • Leidėjas: Springer Nature Switzerland AG
  • ISBN-10: 3030022897
  • ISBN-13: 9783030022891
Kitos knygos pagal šią temą:
This engaging text offers an accessible and clear treatment of the fundamentals of electromagnetics and optics, a core part of the standard undergraduate physics curriculum.  Starting with static electric and magnetic fields, the book works through electromagnetic oscillations and the formation and propagation of electromagnetic waves, before moving on to geometric and wave optics, optical instrumentation and some discussion of new technologies in optics.  The text is written from the experimental physics point of view, giving numerous real life examples and applications of devices. This highly motivating presentation deepens the knowledge in a very accessible way, carefully interweaving theory and practical applications.





Students are guided through the material with well-chosen examples and case studies, and helpful chapter summaries are provided together with numerous exercises and detailed solutions, all intended to motivate and develop a well-founded understanding of the subject matter.







          
1 Electrostatics
1(37)
1.1 Electric Charges; Coulomb's Law
1(2)
1.1.1 Systems of Measurement
3(2)
1.2 The Electrostatic Field
5(1)
1.2.1 Electric Field-Strength
5(2)
1.2.2 Electric Flux; Charges as Sources of Electric Fields
7(1)
1.3 The Electrostatic Potential
8(1)
1.3.1 Potential and Voltage
9(1)
1.3.2 Potential Equation
10(1)
1.3.3 Equipotential Surfaces
10(1)
1.3.4 Special Distributions of Charges
11(1)
1.4 Electric Multipoles
12(1)
1.4.1 The Electric Dipole
13(2)
1.4.2 The Electric Quadrupole
15(1)
1.4.3 Multipole Expansion
15(2)
1.5 Conductors in an Electric Field
17(1)
1.5.1 Influence
17(1)
1.5.2 Capacitors
18(3)
1.6 The Energy of the Electric Field
21(1)
1.7 Dielectrics in Electric Fields
22(1)
1.7.1 Dielectric Polarization
22(1)
1.7.2 Polarization Charges
23(1)
1.7.3 Equations of the Electrostatic Field in Matter
24(3)
1.7.4 The Electric Field Energy in Dielectrics
27(1)
1.8 Atomic Fundamentals of Charges and Electric Moments
28(1)
1.8.1 The Millikan Experiment
28(1)
1.8.2 Deflection of Electrons and Ions in Electric Fields
29(1)
1.8.3 Molecular Dipole Moments
30(3)
1.9 Electrostatics in Nature and Technology
33(1)
1.9.1 Triboelectricity and Contact Potential
33(1)
1.9.2 The Electric Field of Our Atmosphere
33(1)
1.9.3 The Generation of Lightnings
34(1)
1.9.4 Ball Lightnings
35(1)
1.9.5 Electrostatic Air Filter
35(1)
1.9.6 Electrostatic Deposition of Dye Coating
36(1)
1.9.7 Electrostatic Copier and Printer
36(1)
1.9.8 Electrostatic Charging and Neutralization
37(1)
Summary
38(2)
Problems
40(1)
References
41(2)
2 Electric Currents
43(35)
2.1 Current as Transport of Charges
43(2)
2.2 Electric Resistance and Ohm's Law
45(1)
2.2.1 Drift Velocity and Current Density
45(2)
2.2.2 Ohm's Law
47(1)
2.2.3 Examples for the Application of Ohm's Law
48(1)
2.2.4 Temperature Dependence of the Electrical Resistance of Solids: Super-conductivity
49(4)
2.3 Electric Power and Joule's Heating
53(1)
2.4 Electric Networks; Kirchhoff's Rules
54(1)
2.4.1 Resistances in Series
54(1)
2.4.2 Parallel Arrangement of Resistors
55(1)
2.4.3 The Wheatstone Bridge
55(1)
2.5 Methods to Measure Electric Currents and Voltages
56(1)
2.5.1 Current Measuring Instruments
56(1)
2.5.2 Circuits with Ampere-Meters
57(1)
2.5.3 Current Measuring Instruments Used to Measure Voltages
57(1)
2.6 Ionic Conduction in Fluids
58(1)
2.7 Current in Gases and Gas Discharges
59(1)
2.7.1 Concentration of Charge Carriers
59(1)
2.7.2 Creation of Charge Carriers
60(1)
2.7.3 Current-Voltage-Characteristic of a Gas Discharge
61(1)
2.7.4 Mechanism of Gas Discharges
62(2)
2.7.5 Various Types of Gas Discharges
64(1)
2.8 Current Sources
65(1)
2.8.1 Internal Resistance of Current Sources
66(1)
2.8.2 Galvanic Cells
66(2)
2.8.3 Accumulators
68(1)
2.8.4 Different Types of Batteries
69(1)
2.8.5 Fuel Cells
70(2)
2.9 Thermal Current Sources
72(1)
2.9.1 Contact Potential
72(1)
2.9.2 Seebeck Effect
72(1)
2.9.3 Thermoelectric Voltage
73(1)
2.9.4 Peltier-Effect
74(1)
2.9.5 Thermo-electric Converters
75(2)
2.9.6 Thomson Effect
77(1)
Summary
78(1)
Problems
79(1)
References
80(1)
3 Static Magnetic Fields
81(35)
3.1 Permanent Magnets
81(1)
3.2 Magnetic Fields of Stationary Currents
82(1)
3.2.1 Magnetic Flux and Magnetic Voltage
83(1)
3.2.2 The Magnetic Field of a Straight Cylindrical Conductor
84(1)
3.2.3 Magnetic Field in the Inside of a Long Solenoid
84(1)
3.2.4 Vector Potential
85(1)
3.2.5 The Magnetic Field of an Arbitrary Distribution of Electric Currents; Biot-Savart Law
85(5)
3.3 Forces on Moving Charges in Magnetic Fields
90(1)
3.3.1 Forces on Conductors with Currents
91(1)
3.3.2 Forces Between Two Parallel Conductors
92(1)
3.3.3 Experimental Demonstration of the Lorentz Force
92(1)
3.3.4 Electron-and Ion-Optics with Magnetic Fields
93(2)
3.3.5 Hall Effect
95(1)
3.3.6 Barlow's Wheel for the Demonstration of "Electron Friction" in Metals
96(1)
3.4 Electromagnetic Fields and the Relativity Principle
96(1)
3.4.1 The Electric Field of a Moving Charge
97(1)
3.4.2 Relation Between Electric and Magnetic Field
98(2)
3.4.3 Relativistic Transformation of Charge Density and Electric Current
100(1)
3.4.4 Equations for the Transformation of Electromagnetic Fields
101(1)
3.5 Matter in Magnetic Fields
102(1)
3.5.1 Magnetic Dipoles
102(2)
3.5.2 Magnetization and Magnetic Susceptibility
104(1)
3.5.3 Diamagnetism
105(1)
3.5.4 Paramagnetism
106(1)
3.5.5 Ferromagnetism
107(2)
3.5.6 Antiferromagnetism, Ferri-Magnets and Ferrites
109(2)
3.5.7 Equations for the Magnetic Field in Matter
111(1)
3.5.8 Electromagnets
111(1)
3.6 The Magnetic Field of the Earth
112(4)
Summary
116(1)
Problems
117(1)
References
118(1)
4 Temporally Variable Fields
119(14)
4.1 Faraday's Law of Induction
119(3)
4.2 Lenz's Rule
122(1)
4.2.1 Motion Initiated by Induction
122(1)
4.2.2 Electromagnetic Catapult
122(1)
4.2.3 Magnetic Levitation
122(1)
4.2.4 Eddy Currents
123(1)
4.3 Self Inductance and Mutual Inductance
123(1)
4.3.1 Self Inductance
124(3)
4.3.2 Mutual Induction
127(1)
4.4 The Energy of the Magnetic Field
128(1)
4.5 The Displacement Current
129(2)
4.6 Maxwell's Equations and Electrodynamic Potentials
131(2)
Summary
133(1)
Problems
134(1)
References
134(1)
5 Electrotechnical Applications
135(25)
5.1 Electric Generators and Motors
135(2)
5.1.1 DC-Machines
137(2)
5.1.2 AC-Generators
139(1)
5.2 Alternating Current (AC)
140(2)
5.3 Multiphase and Rotary Currents
142(2)
5.4 AC-Current Circuits with Complex Resistors; Phasor Diagrams
144(1)
5.4.1 AC-Circuit with Inductance
144(1)
5.4.2 Circuit with Capacitance
145(1)
5.4.3 General Case
145(2)
5.5 Linear Networks; High- and Low Frequency Passes; Frequency Filters
147(1)
5.5.1 High-Frequency Pass
147(1)
5.5.2 Low Frequency Pass
148(1)
5.5.3 Frequency Filters
148(1)
5.6 Tranformers
149(1)
5.6.1 Tranformer Without Load
150(1)
5.6.2 Transformer with Load
151(2)
5.6.3 Applications
153(1)
5.7 Impedance Matching in ac-Circuits
154(1)
5.8 Rectification
154(1)
5.8.1 One-way Rectification
155(1)
5.8.2 Two-way Rectification
155(1)
5.8.3 Bridge Rectifying Circuit
156(1)
5.8.4 Cascade Circuit
157(1)
5.9 Electron Tubes
157(1)
5.9.1 Vacuum Diodes
157(1)
5.9.2 Triodes
158(2)
Summary
160(1)
Problems
161(1)
References
161(2)
6 Electromagnetic Oscillations and the Origin of Electromagnetic Waves
163(17)
6.1 The Electromagnetic Oscillating Circuit
163(1)
6.1.1 Damped Electromagnetic Oscillations
163(2)
6.1.2 Forced Oscillations
165(1)
6.2 Coupled Oscillation Circuits
166(2)
6.3 Generation of Undamped Oscillations
168(1)
6.4 Open Oscillating Circuits; Hertzian Dipole
169(1)
6.4.1 Experimental Realization of a Transmitter
170(1)
6.4.2 The Electromagnetic Field of the Oscillating Dipole
171(4)
6.5 The Emitted Radiation of the Oscillating Dipole
175(1)
6.5.1 The Emitted Power
176(1)
6.5.2 Radiation Damping
176(1)
6.5.3 Frequency Spectrum of the Emitted Radiation
177(1)
6.5.4 The Radiation of an Accelerated Charge
177(3)
Summary
180(1)
Problems
181(1)
References
181(2)
7 Electromagnetic Waves in Vacuum
183(23)
7.1 The Wave Equation
183(1)
7.2 Electro-magnetic Plane Waves
184(1)
7.3 Periodic Waves
184(1)
7.4 Polarization of Electromagnetic Waves
185(1)
7.4.1 Linear Polarized Waves
185(1)
7.4.2 Circular Polarization
186(1)
7.4.3 Elliptical Polarized Waves
186(1)
7.4.4 Unpolarized Waves
186(1)
7.5 The Magnetic Field of Electromagnetic Waves
186(2)
7.6 Transport of Energy and Momentum by Electromagnetic Waves
188(3)
7.7 Measurement of the Speed of Light
191(1)
7.7.1 The Astronomical Method of Ole Roemer
191(1)
7.7.2 Cogwheel Method by Fizeau
192(1)
7.7.3 The Rotating Mirror of Foucault
192(1)
7.7.4 Phase Method
193(1)
7.7.5 Determination of c by Measurements of Frequency and Wavelength
193(1)
7.8 Standing Electromagnetic Waves
194(1)
7.8.1 Standing Waves in One Direction
194(1)
7.8.2 Three-Dimensional Standing Waves; Cavity Resonators
195(1)
7.9 Waves in Wave Guides and Cables
196(1)
7.9.1 Waves Between Two Plane Parallel Conductors
197(1)
7.9.2 Wave Guides with Rectangular Cross Section
198(3)
7.9.3 Waves Along Wires; Lecher Line; Coaxial Cable
201(2)
7.9.4 Examples of Wave Guides
203(1)
7.10 The Electromagnetic Frequency Spectrum
204(2)
Summary
206(1)
Problems
207(1)
References
208(1)
8 Electromagnetic Waves in Matter
209(38)
8.1 Refractive Index
209(1)
8.1.1 Macroscopic Description
210(1)
8.1.2 Microscopic Model
210(2)
8.2 Absorption and Dispersion
212(4)
8.3 Wave Equation of Electromagnetic Waves in Matter
216(1)
8.3.1 Waves in Nonconductive Media
216(1)
8.3.2 Waves in Conducting Media
217(2)
8.3.3 The Energy of Electromagnetic Waves in Matter
219(1)
8.4 Electromagnetic Waves at the Interface Between Two Media
220(1)
8.4.1 Boundary Conditions for Electric and Magnetic Field
220(1)
8.4.2 Laws for Reflection and Refraction
221(1)
8.4.3 Amplitude and Polarization of Reflected and Refracted Waves
222(1)
8.4.4 Reflectivity and Transmittance at the Interface
223(2)
8.4.5 Brewster Angle
225(1)
8.4.6 Total Internal Reflection
225(1)
8.4.7 Change of the Polarization for Inclined Incidence
226(1)
8.4.8 Phase Shift at the Reflection
227(1)
8.4.9 Reflection at Metal Surfaces
228(1)
8.4.10 Media with Negative Refractive Index
229(1)
8.4.11 Photonic Crystals
230(1)
8.5 Light Propagation in Anisotropic Media; Birefringence
231(1)
8.5.1 Propagation of Light Waves in Anisotropic Media
231(2)
8.5.2 Refractive Index Ellipsoid
233(1)
8.5.3 Birefringence
234(2)
8.6 Generation and Application of Polarized Light
236(1)
8.6.1 Generation of Polarized Light by Reflection
236(1)
8.6.2 Generation of Polarized Light at the Passage Through Dichroitic Crystals
237(1)
8.6.3 Birefringent Polarizers
237(2)
8.6.4 Polarization Turners
239(1)
8.6.5 Optical Activity
240(1)
8.6.6 Stress Birefringence
241(2)
8.7 Nonlinear Optics
243(1)
8.7.1 Optical Frequency Doubling
243(1)
8.7.2 Phase Matching
244(1)
8.7.3 Optical Frequency Mixing
245(1)
8.7.4 Generation of Higher Harmonics
246(1)
Summary
247(1)
Problems
248(1)
References
248(1)
9 Geometrical Optics
249(33)
9.1 Basic Axioms of Geometrical Optics
250(1)
9.2 Optical Imaging
250(2)
9.3 Concave Mirrors
252(3)
9.4 Prisms
255(1)
9.5 Lenses
256(1)
9.5.1 Refraction at a Curved Surface
257(1)
9.5.2 Thin Lenses
258(2)
9.5.3 Thick Lenses
260(1)
9.5.4 System of Lenses
261(2)
9.5.5 Zoom-Lens Systems
263(1)
9.5.6 Lens Aberrations
263(8)
9.5.7 The Aplanatic Imaging
271(2)
9.6 Matrix Methods of Geometrical Optics
273(1)
9.6.1 The Translation Matrix
273(1)
9.6.2 The Refraction Matrix
273(1)
9.6.3 Reflection Matrix
274(1)
9.6.4 Transformation Matrix of a Lens
274(1)
9.6.5 Imaging Matrix
275(1)
9.6.6 Matrices of Lens Systems
275(1)
9.6.7 Jones Vectors
275(2)
9.7 Geometrical Optics of the Atmosphere
277(1)
9.7.1 Deflection of Light Rays in the Atmosphere
277(2)
9.7.2 Apparent Size of the Rising Moon
279(1)
9.7.3 Fata Morgana
279(1)
9.7.4 Rainbows
280(2)
Summary
282(1)
Problems
283(1)
References
284(1)
10 Interference, Diffraction and Scattering
285(43)
10.1 Temporal and Spatial Coherence
285(2)
10.2 Generation and Superposition of Coherent Waves
287(1)
10.3 Experimental Realization of Two-Beam Interference
288(1)
10.3.1 Fresnel's Mirror Arrangement
288(1)
10.3.2 Young's Double Slit Experiment
288(2)
10.3.3 Interference at a Plane-Parallel Plate
290(1)
10.3.4 Michelson Interferometer
290(2)
10.3.5 The Michelson-Morley Experiment
292(2)
10.3.6 Sagnac Interferometer
294(1)
10.3.7 Mach-Zehnder Interferometer
295(1)
10.4 Multiple Beam Interference
296(2)
10.4.1 Fabry-Perot-Interferometer
298(2)
10.4.2 Dielectric Mirrors
300(2)
10.4.3 Anti-reflection Coating
302(1)
10.4.4 Applications of Interferometers
302(2)
10.5 Diffraction
304(1)
10.5.1 Diffraction as Interference Phenomenon
304(1)
10.5.2 Diffraction by a Slit
305(2)
10.5.3 Diffraction Gratings
307(3)
10.6 Fraunhofer- and Fresnel-Diffraction
310(1)
10.6.1 Fresnel Zones
310(3)
10.6.2 Fresnel's Zone Plate
313(1)
10.7 General Treatment of Diffraction
313(1)
10.7.1 The Diffraction Integral
313(1)
10.7.2 Fresnel- and Fraunhofer Diffraction by a Slit
314(1)
10.7.3 Fresnel Diffraction at an Edge
315(1)
10.7.4 Fresnel Diffraction at a Circular Aperture
316(1)
10.7.5 Babinet's Theorem
316(1)
10.8 Fourier Representation of Diffraction
317(1)
10.8.1 Fourier-Transformation
317(1)
10.8.2 Application to Diffraction Problems
318(1)
10.9 Light Scattering
319(1)
10.9.1 Coherent and Incoherent Scattering
320(1)
10.9.2 Scattering Cross Sections
321(1)
10.9.3 Scattering by Micro-particles; Mie-Scattering
322(1)
10.10 Optical Phenomena in Our Atmosphere
322(1)
10.10.1 Light Scattering in Our Atmosphere
323(2)
10.10.2 Halo Phenomena
325(1)
10.10.3 Aureole Around the Moon
326(1)
10.10.4 Glory Phenomena
326(2)
Summary
328(1)
Problems
329(1)
References
330(1)
11 Optical Instruments
331(20)
11.1 The Human Eye
331(1)
11.1.1 The Bio-physical Structure of the Eye
331(2)
11.1.2 Short- and Far-Sightedness
333(1)
11.1.3 Spatial Resolution and Sensitivity of the Eye
333(1)
11.2 Magnifying Optical Instruments
334(1)
11.2.1 Magnifying Glass
335(1)
11.2.2 The Microscope
336(1)
11.2.3 Telescopes
337(2)
11.3 The Importance of Diffraction in Optical Instruments
339(1)
11.3.1 Angular Resolution of Telescopes
339(1)
11.3.2 Resolving Power of the Human Eye
340(1)
11.3.3 Resolving Power of the Microscope
341(1)
11.3.4 Abbe's Theorem of the Formation of Images
342(1)
11.3.5 Surpassing of the Classical Diffraction Limit
343(1)
11.4 The Luminosity of Optical Instruments
344(1)
11.5 Spectrographs and Monochromators
345(1)
11.5.1 Prism Spectrographs
346(1)
11.5.2 Grating Monochromator
347(1)
11.5.3 The Spectral Resolution of Spectrographs
347(3)
11.5.4 A General Expression for the Spectral Resolution
350(1)
Summary
351(1)
Problems
352(1)
References
352(1)
12 New Techniques in Optics
353(32)
12.1 Confocal Microscopy
353(2)
12.2 Optical Near Field Microscopy
355(1)
12.3 Active and Adaptive Optics
355(1)
12.3.1 Active Optics
356(1)
12.3.2 Adaptive Optics
357(1)
12.3.3 Interferometry in Astronomy
358(1)
12.4 Holography
359(1)
12.4.1 Recording of a Hologram
360(1)
12.4.2 The Reconstruction of the Wave Field
361(1)
12.4.3 White Light Holography
362(1)
12.4.4 Holographic Interferometry
363(1)
12.4.5 Applications of Holography
364(1)
12.5 Fourier-Optics
365(1)
12.5.1 The Lens as Fourier-Imaging Component
365(2)
12.5.2 Optical Filtering
367(2)
12.5.3 Optical Pattern Recognition
369(1)
12.6 Micro-Optics
369(1)
12.6.1 Diffractive Optics
369(2)
12.6.2 Fresnel Lenses and Lens Arrays
371(1)
12.6.3 Production Techniques of Diffractive Optical Elements
372(1)
12.6.4 Refractive Micro-Optics
372(1)
12.7 Optical Waveguides and Integrated Optics
373(1)
12.7.1 Light Propagation in Optical Waveguides
373(2)
12.7.2 Modulation of Light
375(1)
12.7.3 Coupling Between Adjacent Waveguides
375(1)
12.7.4 Integrated Optical Elements
376(1)
12.8 Optical Fibers
376(2)
12.8.1 Light Propagation in Optical Fibers
378(1)
12.8.2 Absorption in Optical Fibers
379(1)
12.8.3 Optical Pulse Propagation in Fibers
380(1)
12.8.4 Nonlinear Pulse Propagation; Solitons
381(1)
12.9 Optical Communication
382(3)
Summary
385(1)
Problems
386(1)
References
386(3)
Solutions of Problems 389(54)
Index 443
Prof. Dr. Wolfgang Demtröder worked as research associate in the US and at University Freiburg. He is professor emeritus at University of Kaiserslautern, Germany. His research focuses on laser spectroscopy and molecular physics. His textbooks on laser spectroscopy and on experimental physics are considered classics in the respective fields.