Atnaujinkite slapukų nuostatas

El. knyga: Electrokinetic Remediation for Environmental Security and Sustainability

Edited by (University of Hyderabad, India), Edited by
  • Formatas: EPUB+DRM
  • Išleidimo metai: 22-Mar-2021
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781119670162
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Išleidimo metai: 22-Mar-2021
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781119670162
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Electrokinetic Remediation for Environmental Security and Sustainability

Explore this comprehensive reference on the remediation of contaminated substrates, filled with cutting-edge research and practical case studies

Electrokinetic Remediation for Environmental Security and Sustainability delivers a thorough review of electrokinetic remediation (EKR) for the treatment of inorganic and organic contaminants in contaminated substrates. The book highlights recent progress and developments in EKR in the areas of resource recovery, the removal of pollutants, and environmental remediation. It also discusses the use of EKR in conjunction with nanotechnology and phytoremediation.

Throughout the book, case studies are presented that involve the field implementation of EKR technologies. The book also includes discussions of enhanced electrokinetic remediation of dredged co-contaminated sediments, solar-powered bioelectrokinetics for the mitigation of contaminated agricultural soil, advanced electro-fenton for remediation of organics, electrokinetic remediation for PPCPs in contaminated substrates, and the electrokinetic remediation of agrochemicals such as organochlorine compounds. Other topics include:

  • A thorough introduction to the modelling of electrokinetic remediation
  • An exploration of the electrokinetic recovery of tungsten and removal of arsenic from mining secondary resources
  • An analysis of pharmaceutically active compounds in wastewater treatment plants with a discussion of electrochemical advanced oxidation as an on-site treatment
  • A review of rare earth elements, including general concepts and recovery techniques, like electrodialytic extraction
  • A treatment of hydrocarbon-contaminated soil in cold climate conditions
  • Perfect for environmental engineers and scientists, geologists, chemical engineers, biochemical engineers, and scientists working with green technology, Electrokinetic Remediation for Environmental Security and Sustainability will also earn a place in the libraries of academic and industry researchers, engineers, regulators, and policy makers with an interest in the remediation of contaminated natural resources.

    Preface xix
    Contributors xxiii
    1 An Overview of the Modeling of Electrokinetic Remediation
    1(34)
    Maria Vilien-Guzman
    Maria del Mar Cerrillo-Gonzalez
    Juan Manuel Paz-Garcia
    Jose Miguel Rodriguez-Maroto
    1.1 Introduction
    1(2)
    1.2 Reactive Transport
    3(15)
    1.2.1 One-Dimensional Electromigration Model
    3(4)
    1.2.2 One-Dimensional Electromigration and Electroosmosis Model
    7(2)
    1.2.3 One-Dimensional Electrodialytic Model
    9(7)
    1.2.4 One-Dimensional Electroremediation Model Using Nernst-Planck-Poisson
    16(2)
    1.3 Chemical Equilibrium
    18(6)
    1.4 Models for the Future
    24(11)
    1.4.1 Combining Chemical Equilibrium and Chemical Reaction Kinetics
    24(2)
    1.4.2 Multiscale Models
    26(3)
    1.4.3 Two-and Three-Dimensional Models
    29(1)
    1.4.4 Multiphysics Modeling
    29(1)
    Acknowledgments
    30(1)
    References
    30(5)
    2 Basic Electrochemistry Tools in Environmental Applications
    35(26)
    Chanchal Kumar Mitra
    Majeti Narasimha Vara Prasad
    2.1 Introduction
    35(9)
    2.1.1 Electrochemical Half-Cells
    37(1)
    2.1.2 Electrode Potential
    38(2)
    2.1.3 Electrical Double Layer
    40(1)
    2.1.4 Electrochemical Processes
    41(1)
    2.1.4.1 Polarization (Overvoltage)
    41(1)
    2.1.4.2 Slow Chemical Reactions
    42(2)
    2.2 Basic Bioelectrochemistry and Applications
    44(1)
    2.3 Industrial Electrochemistry and the Environment
    44(1)
    2.3.1 Isolation and Purification of Important Metals
    44(1)
    2.3.2 Production of Important Chemical Intermediates by Electrochemistry
    45(1)
    2.4 Electrokinetic Phenomena
    45(2)
    2.4.1 Electroosmosis in Bioremediation
    46(1)
    2.5 Electrophoresis and Its Application in Bioremediation
    47(1)
    2.6 Biosensors in Environmental Monitoring
    48(4)
    2.6.1 What Are Biosensors?
    48(1)
    2.6.2 Biosensors as Environmental Monitors
    49(3)
    2.7 Electrochemical Systems as Energy Sources
    52(3)
    2.8 Conclusions
    55(6)
    References
    55(6)
    3 Combined Use of Remediation Technologies with Electrokinetics
    61(24)
    Helena I. Gomes
    Erika B. Bustos
    3.1 Introduction
    61(1)
    3.2 Biological Processes
    62(5)
    3.2.1 Electrobioremediation
    62(2)
    3.2.2 Electro-Phytoremediation
    64(3)
    3.3 Permeable Reactive Barriers
    67(1)
    3.4 Advanced Oxidation Processes
    67(4)
    3.4.1 Electrokinetics-Enhanced In Situ Chemical Oxidation (EK-ISCO)
    67(3)
    3.4.2 Electro-Fenton
    70(1)
    3.5 In Situ Chemical Reduction (ISCR)
    71(1)
    3.6 Challenges for Upscaling
    71(2)
    3.7 Concluding Remarks
    73(12)
    References
    73(12)
    4 The Electrokinetic Recovery of Tungsten and Removal of Arsenic from Mining Secondary Resources: The Case of the Panasqueira Mine
    85(14)
    Joana Almeida
    Paulina Faria
    Antonio Santos Silva
    Eduardo P. Mateus
    Alexandra B. Ribeiro
    4.1 Introduction
    85(1)
    4.2 Tungsten Mining Resources: The Panasqueira Mine
    86(3)
    4.2.1 The Development of the Industry
    86(2)
    4.2.2 Ore Extraction Processes
    88(1)
    4.2.3 Potential Risks
    88(1)
    4.3 The Circular Economy of Tungsten Mining Waste
    89(4)
    4.3.1 Panasqueira Old Slimes vs. Current Slimes
    89(1)
    4.3.2 Tungsten Recovery
    90(2)
    4.3.3 Building Material-Related Applications
    92(1)
    4.4 Social, Economic, and Environmental Impacts
    93(1)
    4.5 Final Remarks
    94(5)
    Acknowledgments
    94(1)
    References
    95(4)
    5 Electrokinetic Remediation of Dredged Contaminated Sediments
    99(42)
    Kristine B. Pedersen
    Ahmed Benamar
    Mohamed T. Ammami
    Florence Portet-Koltalo
    Gunvor M. Kirkelund
    5.1 Introduction
    99(2)
    5.2 EKR Removal of Pollutants from Harbor Sediments
    101(10)
    5.2.1 Pollutants and Removal Efficiencies
    101(1)
    5.2.1.1 Metals
    102(2)
    5.2.1.2 Organic Pollutants and Organometallic Pollutants
    104(1)
    5.2.2 Influence of Experimental Settings and Sediment Properties on the Efficiency of EKR
    105(1)
    5.2.2.1 Enhancement of EKR - Changes in Design
    106(1)
    5.2.2.2 Enhancement of EKR - Chemical Agents and Surfactants
    106(2)
    5.2.2.3 Sediment Characteristics
    108(3)
    5.3 Case Studies of Enhancement Techniques
    111(9)
    5.4 Evaluation of the Best Available EKR Practice
    120(3)
    5.4.1 Energy Consumption
    120(2)
    5.4.2 Environmental Impacts
    122(1)
    5.5 Scaling Up EKR for Remediation of Polluted Harbor Sediments
    123(6)
    5.5.1 Results and Comments
    125(4)
    5.6 Future Perspectives
    129(12)
    References
    131(10)
    6 Pharmaceutically Active Compounds in Wastewater Treatment Plants: Electrochemical Advanced Oxidation as Onsite Treatment
    141(18)
    Ana Rita Ferreira
    Paula Guedes
    Eduardo P. Mateus
    Alexandra B. Ribeiro
    Nazare Couto
    6.1 Introduction
    141(7)
    6.1.1 Emerging Organic Contaminants
    141(1)
    6.1.2 Occurrence and Fate of EOCs
    141(2)
    6.1.2.1 EOCs in WWTPs
    143(1)
    6.1.3 Water Challenges
    144(2)
    6.1.4 Technologies for Wastewater Treatment - Electrochemical Process
    146(2)
    6.2 Electrochemical Reactor for EOC Removal in WWTPs
    148(5)
    6.2.1 Experimental Design
    148(1)
    6.2.1.1 Analytical Methodology
    148(2)
    6.2.2 Electrokinetic Reactor Operating in a Continuous Vertical Flow Mode
    150(3)
    6.3 Conclusions
    153(6)
    Acknowledgments
    153(1)
    References
    153(6)
    7 Rare Earth Elements: Overview, General Concepts, and Recovery Techniques, Including Electrodialytic Extraction
    159(14)
    Nazare Couto
    Ana Rita Ferreira
    Vanda Lopes
    Stephen Peters
    Sibel Pamukcu
    Alexandra B. Ribeiro
    7.1 Introduction
    159(5)
    7.1.1 Rare Earth Elements: Characterization, Applications, and Geo-Dependence
    159(3)
    7.1.2 REE Mining and Secondary Sources
    162(1)
    7.1.3 REE Extraction and Recovery from Secondary Resources
    163(1)
    7.2 Case Study
    164(2)
    7.3 Conclusions
    166(7)
    Acknowledgments
    167(1)
    References
    167(6)
    8 Hydrocarbon-Contaminated Soil in Cold Climate Conditions: Electrokinetic-Bioremediation Technology as a Remediation Strategy
    173(18)
    Ana Rita Ferreira
    Paula Guedes
    Eduardo P. Mateus
    Pernille Erland Jensen
    Alexandra B. Ribeiro
    Nazare Couto
    8.1 Introduction
    173(4)
    8.1.1 Hydrocarbon Contamination
    173(1)
    8.1.2 Oil Spills in Arctic Environments
    174(1)
    8.1.3 Remediation of Petroleum-Contaminated Soil
    175(1)
    8.1.3.1 Electrokinetic Remediation (EKR)
    176(1)
    8.2 Case Study
    177(3)
    8.2.1 Description of the Site
    177(1)
    8.2.2 Soil Sampling
    178(1)
    8.2.3 Electrokinetic Remediation (EKR) Experiments
    178(1)
    8.2.4 Analytical Procedures
    179(1)
    8.2.4.1 Soil Characterization
    179(1)
    8.3 Determination of Metals and Phosphorus
    180(6)
    8.3.1 Results and Discussion
    180(1)
    8.3.1.1 Soil Characteristics
    180(2)
    8.3.1.2 EKR Experiments
    182(4)
    8.4 Conclusions
    186(5)
    Acknowledgments
    186(1)
    References
    186(5)
    9 Electrochemical Migration of Oil and Oil Products in Soil
    191(36)
    V.A. Korolev
    D.S. Nesterov
    9.1 Introduction
    191(1)
    9.2 Specific Nature of Soils Polluted by Oil and Its Products
    192(1)
    9.3 Influence of Mineral Composition
    193(2)
    9.4 Influence of Soil Dispersiveness
    195(3)
    9.5 Influence of Physical Soil Properties
    198(3)
    9.6 Influence of Physico-Chemical Soil Properties
    201(2)
    9.7 Influence of the Initial Water/Oil Ratio in a Soil
    203(4)
    9.8 Influence of the Oil Aging Process
    207(4)
    9.9 Influence of Oil Composition
    211(9)
    9.10 Conclusions
    220(7)
    Acknowledgments
    222(1)
    References
    222(5)
    10 Nanostructured Ti02-Based Hydrogen Evolution Reaction (HER) Electrocatalysts: A Preliminary Feasibility Study in Electrodialytic Remediation with Hydrogen Recovery
    227(24)
    Antonio Rubino
    Joana Almeida
    Catia Magro
    Pier G. Schiavi
    Paula Guedes
    Nazare Couto
    Eduardo P. Mateus
    Pietro Altimari
    Maria L. Astolfi
    Robertino Zanoni
    Alexandra B. Ribeiro
    Francesco Pagnanelli
    10.1 Introduction
    227(4)
    10.1.1 Electrokinetic Technologies: Electrodialytic Ex Situ Remediation
    228(2)
    10.1.2 Nanostructured TiO2 Electrocatalysts Synthesized Through Electrochemical Methods
    230(1)
    10.2 Case Study
    231(12)
    10.2.1 Aim and Scope
    231(1)
    10.2.2 Experimental
    232(1)
    10.2.2.1 Ti02 Based Electrocatalyst Synthesis and Characterization
    232(1)
    10.2.2.2 ED Experiments
    233(2)
    10.2.3 Discussion
    235(1)
    10.2.3.1 Blank Tests: Electrocatalysts Effectiveness toward HER
    235(2)
    10.2.3.2 ED Remediation for Sustainable CRMs Recovery
    237(6)
    10.3 Final Considerations
    243(8)
    Acknowledgments
    244(1)
    References
    244(7)
    11 Hydrogen Recovery in Electrodialytic-Based Technologies Applied to Environmental Contaminated Matrices
    251(20)
    Catia Magro
    Joana Almeida
    Juan Manuel Paz-Garcia
    Eduardo P. Mateus
    Alexandra B. Ribeiro
    11.1 Scope
    251(2)
    11.2 Technology Concept
    253(7)
    11.2.1 Potential Secondary Resources
    253(1)
    11.2.2 Electrodialytic Reactor
    254(1)
    11.2.2.1 Electrodes
    254(2)
    11.2.2.2 Ion-Exchange Membranes
    256(2)
    11.2.2.3 PEMFC System
    258(2)
    11.3 Economic Assessment of PEMFC Coupled with Electroremediation
    260(5)
    11.3.1 Scenario Analysis
    260(2)
    11.3.2 Hydrogen Business Model Canvas
    262(2)
    11.3.3 SWOT Analysis
    264(1)
    11.4 Final Remarks
    265(6)
    Acknowledgments
    266(1)
    References
    266(5)
    12 Electrokinetic-Phytoremediation of Mixed Contaminants in Soil
    271(16)
    Joana Dionisio
    Nazare Couto
    Paula Guedes
    Cristiana Gongalves
    Alexandra B. Ribeiro
    12.1 Soil Contamination
    271(1)
    12.2 Phytoremediation
    272(2)
    12.3 Electroremediation
    274(5)
    12.3.1 EK Process Coupled with Phytoremediation
    275(2)
    12.3.2 EK-Assisted Bioremediation in the Treatment of Inorganic Contaminants
    277(1)
    12.3.3 EK-Assisted Bioremediation in the Treatment of Organic Contaminants
    278(1)
    12.4 Case Study of EK and Electrokinetic-Assisted Phytoremediation
    279(2)
    12.5 Conclusions
    281(6)
    Acknowledgments
    282(1)
    References
    282(5)
    13 Enhanced Electrokinetic Techniques in Soil Remediation for Removal of Heavy Metals
    287(16)
    Sadia Ilyas
    Rajiv Ranjan Srivastava
    Hyunjung Kim
    Humma Akram Cheema
    13.1 Introduction
    287(1)
    13.2 Electrokinetic Mechanism and Phenomenon
    288(1)
    13.3 Limitations of the Electrokinetic Remediation Process
    289(1)
    13.4 Need for Enhancement in the Electrokinetic Remediation Process
    290(2)
    13.5 Enhancement Techniques
    292(1)
    13.5.1 Surface Modification
    292(1)
    13.6 Cation-Selective Membranes
    293(1)
    13.7 Electro-Bioremediation
    294(1)
    13.8 Electro-Geochemical Oxidation
    295(1)
    13.9 Lasagna™ Process
    296(1)
    13.10 Other Potential Processes
    296(2)
    13.11 Summary
    298(5)
    Acknowledgments
    299(1)
    References
    299(4)
    14 Assessment of Soil Fertility and Microbial Activity by Direct Impact of an Electrokinetic Process on Chromium-Contaminated Soil
    303(20)
    Prasun Kumar Chakraborty
    Prem Prakash
    Brijesh Kumar Mishra
    14.1 Introduction
    303(1)
    14.2 Experimental Section
    304(4)
    14.2.1 Soil Characteristics and Preparation of Contaminated Soil
    304(1)
    14.2.2 Electrokinetic Tests, Experimental Setup, and Procedure
    305(1)
    14.2.3 Testing Procedure
    306(1)
    14.2.4 Extraction and Analytical Methods
    306(1)
    14.2.5 Soil Nutrients
    306(1)
    14.2.6 Soil Microbial Biomass Carbon Analysis
    307(1)
    14.2.7 Quality Control and Quality Assurance
    307(1)
    14.3 Results and Discussion
    308(2)
    14.3.1 Electrokinetic Remediation of Chromium-Contaminated Soil
    308(1)
    14.3.1.1 Electrical Current Changes During the Electrokinetic Experiment
    308(1)
    14.3.2 pH Distribution in Soil During and After the Electrokinetic Experiment
    309(1)
    14.4 Removal of Cr
    310(2)
    14.4.1 The Distribution of Total Cr and Its Electroosmotic Flow During the Electrokinetic Experiment
    310(2)
    14.5 Effects of the Electrokinetic Process on Some Soil Properties
    312(6)
    14.5.1 Soil Organic Carbon
    312(2)
    14.5.2 Soil-Available Nitrogen, Phosphorus, Potassium, and Calcium
    314(4)
    14.5.3 Soil Microbial Biomass Carbon
    318(1)
    14.6 Conclusion
    318(5)
    References
    319(4)
    15 Management of Clay Properties Based on Electrokinetic Nanotechnology
    323(40)
    D.S. Nesterov
    V.A. Korolev
    15.1 Introduction
    323(3)
    15.2 Objects of the Study
    326(2)
    15.3 Methods of the Study
    328(2)
    15.4 Results and Discussion
    330(24)
    15.4.1 Regulation of Soil pH
    330(2)
    15.4.2 Regulation of Oxidation-Reduction Potential
    332(1)
    15.4.3 Regulation of Soil Particle Surface-Charge Density
    332(7)
    15.4.4 EDL Parameter Regulation
    339(4)
    15.4.5 Regulation of Clav CEC
    343(2)
    15.4.6 Regulation of Physico-Chemical Parameters of Soils
    345(1)
    15.4.7 Regulation of Soil Texture and Structure
    346(6)
    15.4.8 Regulation of Physical Clay Properties
    352(1)
    15.4.9 Regulation of Soil Strength and Deformability
    353(1)
    15.5 Conclusions
    354(9)
    Acknowledgments
    355(1)
    Abbreviations
    355(2)
    References
    357(6)
    16 Technologies to Create Electrokinetic Protective Barriers
    363(50)
    D.S. Nesterov
    V.A. Korolev
    16.1 Introduction
    363(3)
    16.2 Conventional Electrokinetic Barriers
    366(3)
    16.2.1 Cationic Contaminants
    366(1)
    16.2.2 Anionic Pollutants
    367(1)
    16.2.3 Advanced EKB Implementations
    367(1)
    16.2.4 Using EKBs for Soil Remediation
    368(1)
    16.3 Electrokinetic Barrier with Ion-Selective Membranes (IS-EKB)
    369(1)
    16.4 Electrokinetic Barrier Based on Geosynthetics (EKG-B)
    370(1)
    16.5 Bio-Electrokinetic Protective Barrier (Bio-EKB)
    371(5)
    16.6 Electrokinetic Permeable Reactive Barriers (EK-PRB)
    376(21)
    16.6.1 EK-PRBs Based on Activated Carbon
    377(1)
    16.6.2 EK-PRBs Based on Iron Compounds
    378(1)
    16.6.2.1 ZVI-Based EK-PRBs
    379(2)
    16.6.2.2 EK-PRBs Based on Ferric/Ferrous Compounds
    381(1)
    16.6.3 EK-PRBs Based on Red Mud
    382(1)
    16.6.4 EK-PRBs Based on Zeolites
    383(1)
    16.6.5 EK-PRBs Based on Clays or Modified Soils
    383(1)
    16.6.6 Other Materials for the Creation of EK-PRBs
    384(13)
    16.7 Electrokinetic Permeable Reactive Barriers to Prevent Radionuclide Contamination
    397(3)
    16.8 Conclusion
    400(13)
    Acknowledgments
    401(1)
    Abbreviations
    401(2)
    References
    403(10)
    17 Emerging Contaminants in Wastewater: Sensor Potential for Monitoring Electroremediation Systems
    413(20)
    Catia Magro
    Eduardo P. Mateus
    Maria de Fdtima Raposo
    Alexandra B. Ribeiro
    17.1 Scope
    413(3)
    17.2 Removal Technologies: Electroremediation Treatment
    416(1)
    17.3 Monitoring Tool: Electronic Tongues Devices
    417(7)
    17.3.1 Sensor Design
    418(1)
    17.3.1.1 Thin-Film Nanomaterials
    419(1)
    17.3.1.2 Promising Thin-Film Deposition Techniques
    420(2)
    17.3.1.3 Electrical Measurements: Impedance Spectroscopy
    422(2)
    17.3.2 Data Treatment
    424(1)
    17.4 Critical View on Coupling EK and Electronic Tongues
    424(3)
    17.5 Final Remarks
    427(6)
    Acknowledgments
    428(1)
    References
    428(5)
    18 Perspectives on Electrokinetic Remediation of Contaminants of Emerging Concern in Soil
    433(20)
    Paula Guedes
    Nazare Couto
    Eduardo P. Mateus
    Cristina Silva Pereira
    Alexandra B. Ribeiro
    18.1 Introduction
    433(3)
    18.1.1 Soil Pollution
    433(1)
    18.1.2 Contaminants of Emerging Concern
    434(2)
    18.2 Electrokinetic Process
    436(9)
    18.2.1 Removal Mechanisms
    437(2)
    18.2.2 Electro-Degradation Mechanisms
    439(3)
    18.2.3 Enhanced Bio-Degradation
    442(3)
    18.3 Conclusion
    445(8)
    Acknowledgments
    446(1)
    References
    446(7)
    19 Electrokinetic Remediation for the Removal of Organic Waste in Soil and Sediments
    453(26)
    S.M.P.A. Koliyabandara
    Chamika Siriwardhana
    Sakuni M. De Silva
    Janitha Walpita
    Asitha T. Cooray
    19.1 Introduction
    453(1)
    19.2 Organic Soil Pollution
    453(3)
    19.2.1 The Fate of Organic Soil Pollutants
    455(1)
    19.2.2 Biomagnification and Bioaccumulation of Soil Pollutants
    455(1)
    19.3 Soil Remediation Methods
    456(5)
    19.3.1 Physical Methods
    456(1)
    19.3.1.1 Capping
    456(1)
    19.3.1.2 Thermal Desorption
    457(1)
    19.3.1.3 Soil Vapor Extraction (SVE)
    458(1)
    19.3.1.4 Incineration
    458(1)
    19.3.1.5 Air Sparging
    458(1)
    19.3.2 Chemical Methods
    458(1)
    19.3.2.1 Soil Washing/Flushing
    459(1)
    19.3.2.2 Chemical Oxidation Remediation
    459(1)
    19.3.3 Bioremediation
    460(1)
    19.3.3.1 Microbial Remediation
    460(1)
    19.3.3.2 Phytoremediation
    460(1)
    19.4 Electrokinetic Remediation (EKR)
    461(3)
    19.4.1 Basic Principles of EKR
    461(1)
    19.4.1.1 Electrolysis of Pore Water
    462(1)
    19.4.1.2 Electromigration
    462(2)
    19.4.1.3 Electroosmosis
    464(1)
    19.4.1.4 Electrophoresis
    464(1)
    19.5 EKR for the Treatment of Soils and Sediments
    464(6)
    19.5.1 Enhancement Techniques Coupled with EKR
    466(1)
    19.5.1.1 Techniques Used to Enhance the Solubility of Contaminants
    466(1)
    19.5.1.2 Techniques to Control Soil pH
    466(1)
    19.5.1.3 Coupling with Other Remediation Techniques
    467(1)
    19.5.2 Facilitating Agents for PAH Removal
    468(1)
    19.5.2.1 Cyclodextrin-Enhanced EKR
    468(1)
    19.5.2.2 Surfactant-Enhanced EKR
    468(1)
    19.5.3 Cosolvent-Enhanced EKR
    469(1)
    19.5.4 Biosurfactant-Enhanced EKR
    469(1)
    19.6 Factors Affecting the Efficiency of Electrokinetic Remediation
    470(1)
    19.6.1 Effect of pH
    470(1)
    19.6.2 Effect of Electrolytes
    470(1)
    19.6.3 Effect of Soil Characteristics
    470(1)
    19.6.4 Effect of the Voltage Gradient
    471(1)
    19.7 Conclusions and Future Perspective
    471(8)
    Acknowledgments
    471(1)
    References
    472(7)
    20 The integration of Electrokinetics and In Situ Chemical Oxidation Processes for the Remediation of Organically Polluted Soils
    479(24)
    Long Cang
    Qiao Huang
    Hongting Xu
    Mingzhu Zhou
    20.1 Introduction
    479(1)
    20.2 Principles Underlying EK-ISCO Remediation Technology
    480(4)
    20.2.1 Desorption and Migration of Organic Pollutants
    480(2)
    20.2.2 Oxidant Migration
    482(2)
    20.3 Factors that Influence EK-ISCO Technology
    484(2)
    20.3.1 Soil Properties
    484(1)
    20.3.2 Dosage and Methods Used to Add Oxidants to Soil
    485(1)
    20.3.3 Concentration and Aging of Organic Pollutants
    486(1)
    20.4 Enhanced EK-ISCO Remediation Methods
    486(4)
    20.4.1 Electro-Fenton Process
    486(1)
    20.4.2 pH Control
    487(1)
    20.4.3 Ion-Exchange Membranes
    488(1)
    20.4.4 Adding Solubilizers
    488(1)
    20.4.5 Electrode Activation/Electrode Thermal Activation
    489(1)
    20.4.6 Nanomaterial-Enhanced Methods
    490(1)
    20.5 Pilot/Field-Scale Studies of EK-ISCO Remediation Technologies
    490(4)
    20.5.1 Experimental Design
    490(1)
    20.5.1.1 Electrode Materials
    490(1)
    20.5.1.2 Configuring Electrode Settings
    491(1)
    20.5.1.3 Power Supply Modes
    492(1)
    20.5.2 Pilot Cases
    493(1)
    20.6 Conclusions
    494(9)
    Acknowledgments
    494(1)
    References
    495(8)
    21 Electrokinetic and Electrochemical Removal of Chlorinated Ethenes: Application in Low- and High-Permeability Saturated Soils
    503(38)
    Bente H. Hytdegaard
    Lisbeth M. Ottosen
    21.1 Introduction
    503(5)
    21.1.1 Chlorinated Ethenes
    503(3)
    21.1.2 Low-Permeability Saturated Soils
    506(1)
    21.1.3 High-Permeability Saturated Soils
    507(1)
    21.2 Electrokinetically Enhanced Remediation in Low-Permeability Saturated Soils
    508(8)
    21.2.1 Electrokinetically Enhanced Bioremediation (EK-BIO)
    508(1)
    21.2.1.1 EK-Induced Delivery of Microbial Cultures and Electron Donors
    509(1)
    21.2.1.2 Current State of Development from an Applied Perspective
    510(1)
    21.2.2 Electrokinetically Enhanced In Situ Chemical Oxidation (EK-ISCO)
    511(1)
    21.2.2.1 EK-Induced Delivery of Oxidants
    512(1)
    21.2.2.2 Current State of Development from an Applied Perspective
    513(1)
    21.2.3 Electrokinetically Enhanced Permeable Reactive Barriers (EK-PRB)
    514(1)
    21.2.3.1 EK-Induced Mobilization of Chlorinated Ethenes
    514(1)
    21.2.3.2 EK-Controlled Reactivity of the Filling Material
    515(1)
    21.2.3.3 Current State of Development from an Applied Perspective
    515(1)
    21.3 Electrochemical Remediation in High-Permeability Saturated Soils
    516(11)
    21.3.1 Electrochemistry in Complex Environmental Settings
    517(2)
    21.3.2 Electrochemical Remediation in Complex Environmental Settings
    519(3)
    21.3.2.1 Electrochemically Induced Changes in Hydrogeochemistry
    522(3)
    21.3.2.2 Current State of Development from an Applied Perspective
    525(2)
    21.4 Summary
    527(14)
    References
    528(13)
    22 Chlorophenolic Compounds and Their Transformation Products by the Heterogeneous Fenton Process: A Review
    541(46)
    Cetin Kantar
    Ozlem Oral
    22.1 Introduction
    541(4)
    22.2 Heterogeneous Fenton Processes
    545(20)
    22.2.1 Effect of Catalyst Type and Possible Reaction Mechanisms
    546(1)
    22.2.1.1 Iron Oxides
    547(5)
    22.2.1.2 Pyrite
    552(1)
    22.2.1.3 Zero-Valent Iron (ZVI)
    553(2)
    22.2.1.4 Multimetallic Iron-Based Catalysts
    555(5)
    22.2.1.5 Supported Iron-Based Catalyst Materials
    560(5)
    22.3 Factors Affecting CP Removal Efficiency in Heterogeneous Fenton Processes
    565(2)
    22.3.1 Effect of Catalyst Size
    565(1)
    22.3.2 Effect of Catalyst Dosage
    565(1)
    22.3.3 Effect of pH
    566(1)
    22.3 A Effect of Hydrogen Peroxide Dose
    567(2)
    22.3.5 Effect of Organic Ligands
    568(1)
    22.4 Reaction By-Products
    569(2)
    22.5 Mode of Implementation, Reactor Configuration, and Biodegradability
    571(1)
    22.6 Conclusions
    572(15)
    References
    574(13)
    23 Clays and Clay Polymer Composites for Electrokinetic Remediation of Soil
    587(16)
    Jayasankar Janeni
    Nadeesh M. Adassooriya
    23.1 Introduction
    587(1)
    23.2 Electrokinetic Remediation Technique: An Overview
    588(1)
    23.3 Clay Soil and Minerals
    588(1)
    23.4 Clay Mineral Classifications and Structure
    589(1)
    23.5 Layer Charge
    590(1)
    23.6 Active Bond Sites in Clay Minerals
    590(1)
    23.7 Properties of Clay Minerals
    591(1)
    23.8 Clay Minerals and Their Modifications
    591(1)
    23.9 Organoclays and Their Properties
    591(2)
    23.10 Factors Affecting the Mechanism of Transporting Contaminants in Clay Soils
    593(5)
    23.10.1 Structural Parameters
    593(1)
    23.10.2 Mass Transport
    593(2)
    23.10.3 Electrokinetic Potential (Zeta Potential)
    595(1)
    23.10.4 Polymeric Agent Enhanced Electrokinetic Decontamination of Clay Soils
    596(1)
    23.10.5 Future Perspectives
    597(1)
    23.11 Summary
    598(5)
    References
    598(5)
    24 Enhanced Remediation and Recovery of Metal-Contaminated Soil Using Electrokinetic Soil Flushing
    603(26)
    Yudha Gusti Wibowo
    Bimastyaji Surya Ramadan
    24.1 Introduction
    603(1)
    24.2 Metal Contamination in Mining Areas
    604(1)
    24.3 Treatment of Metal-Contaminated Soil Using EKSF
    605(15)
    24.3.1 Soil Flushing
    605(1)
    24.3.2 Fundamental Equation for EK Remediation
    606(3)
    24.3.3 Electrokinetic Soil Flushing (EKSF)
    609(1)
    24.3.4 Flushing Fluid Enhanced EKSF Performance
    610(7)
    24.3.5 Preventing pH from Acidification
    617(1)
    24.3.6 Other Factors that Enhance EKSF Performance
    618(1)
    24.3.7 Energy Requirements and Future Perspectives
    618(2)
    24.4 Conclusion
    620(9)
    References
    620(9)
    25 Recent Progress on Pressure-Driven Electro-Dewatering (PED) of Contaminated Sludge
    629(24)
    Bimastyaji Surya Ramadan
    Amelinda Dhiya Farhah
    Mochtar Hadiwidodo
    Mochamad Arief Budihardjo
    25.1 Introduction
    629(1)
    25.2 Electro-Dewatering for Sludge Treatment
    630(6)
    25.2.1 Conventional Sludge Treatment Systems
    630(1)
    25.2.2 Overview of Electro-Dewatering Systems
    630(2)
    25.2.3 Fundamental Equations of EDW Systems
    632(4)
    25.3 Design Considerations for PED Systems
    636(5)
    25.3.1 Reducing Electrical Resistance in PED Systems
    638(1)
    25.3.2 Maintaining Optimum pH and Salinity
    639(2)
    25.3.3 Determining Sludge Characteristics and Properties
    641(1)
    25.3 A Operating PED Under Constant Voltage or Current
    641(3)
    25.3.5 Determining Appropriate Electrodes (Anodes and Cathodes)
    642(1)
    25.3.6 Reducing Energy Consumption
    643(1)
    25.4 Future Perspectives
    644(3)
    25.5 Conclusion
    647(6)
    References
    647(6)
    26 Removing Ionic and Nonionic Pollutants from Soil, Sludge, and Sediment Using Ultrasound-Assisted Electrokinetic Treatment
    653(26)
    Bimastyaji Surya Ramadan
    Marita Wulandari
    Yudha Gusti Wibowo
    Nurani Ikhlas
    Dimastyaji Yusron Nurseta
    26.1 Introduction
    653(1)
    26.2 Overview of Technologies
    654(5)
    26.2.1 Ultrasonication
    654(2)
    26.2.2 Electrokinetic Remediation
    656(3)
    26.3 Desorption and Degradation Mechanism
    659(7)
    26.3.1 Removing Contaminants by Ultrasonication
    659(1)
    26.3.2 Ultrasonic Wave Effect
    660(1)
    26.3.2.1 Cavitation
    660(1)
    26.3.2.2 Thermal Effect
    661(1)
    26.3.2.3 Chemical Effect
    661(1)
    26.3.2.4 Biological Effect
    662(1)
    26.3.3 Electrokinetic Remediation Process
    662(1)
    26.3.3.1 Electrolysis
    662(2)
    26.3.3.2 Electromigration and Electrophoresis
    664(1)
    26.3.3.3 Electroosmosis
    664(1)
    26.3.3.4 Electrooxidation/Reduction
    665(1)
    26.4 Ultrasonication-Assisted Electrokinetic Remediation
    666(5)
    26.4.1 Recent Progress in Ultrasonication-Assisted Electrokinetic Remediation (US-EK)
    666(1)
    26.4.2 Factors Affecting Performance
    666(1)
    26.4.2.1 System Parameters
    666(3)
    26.4.2.2 Contaminant and Environmental Parameters
    669(2)
    26.4.3 Future Directions
    671(1)
    26.5 Conclusions
    671(8)
    References
    672(7)
    Index 679
    Alexandra B. Ribeiro, is Associate Professor in Habilitation in Environmental Engineering at NOVA School of Sciences and Technology at NOVA University Lisbon in Portugal. She received her doctorate in Environmental Engineering at the Technical University of Denmark.

    Majeti Narasimha Vara Prasad is Emeritus Professor in the School of Life Sciences at the University of Hyderabad in India. He has published over 216 papers in scholarly journals and edited 34 books. He received his doctorate in Botany from Lucknow University, India in 1979. Based on an independent study by Stanford University scientists in 2020, he figured in the top 2% of scientists from India, ranked number 1 in Environmental Sciences (116 in world).