Atnaujinkite slapukų nuostatas

El. knyga: Electromagnetic Fluctuations at the Nanoscale: Theory and Applications

  • Formatas: EPUB+DRM
  • Serija: NanoScience and Technology
  • Išleidimo metai: 09-Jun-2017
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783662534748
  • Formatas: EPUB+DRM
  • Serija: NanoScience and Technology
  • Išleidimo metai: 09-Jun-2017
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783662534748

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book provides a general formalism for the calculation of the spectral correlation function for the fluctuating electromagnetic field. The procedure is applied to the radiative heat transfer and the van der Waals friction using both the semi-classical theory of the fluctuating electromagnetic field and quantum field theory. Applications of the radiative heat transfer and non-contact friction to scanning probe spectroscopy are presented. The theory gives a tentative explanation for the experimental non-contact friction data.The book explains that radiative heat transfer and the van der Waals friction are largely enhanced at short separations between the bodies due to the evanescent electromagnetic waves. Particular strong enhancement occurs if the surfaces of the bodies can support localized surface modes like surface plasmons, surface polaritons or adsorbate vibrational modes. An electromagnetic field outside a moving body can also be created by static charges which are alway

s present on the surface of the body due to inhomogeneities, or due to a bias voltage. This electromagnetic field produces electrostatic friction which can be significantly enhanced if on the surface of the body there is a 2D electron or hole system or an incommensurate adsorbed layer of ions exhibiting acoustic vibrations.

Surface Electromagnetic Waves.- Theory of Fluctuating Electromagnetic Field.- Thermal Radiation from the Plane Sources.- van der Waals Interaction.- Radiative Heat Transfer.- van der Waals Friction.- Electrostatic Friction.- Phonon and Internal Noncontact Friction.- Summary and Outlook.
1 Introduction
1(20)
1.1 Fluctuations and the Physical Origin of the van der Waals and Casimir Forces
3(4)
1.2 Radiative Heat Transfer
7(6)
1.3 Non-contact Friction
13(8)
2 Surface Electromagnetic Waves
21(8)
2.1 Surface Polaritons
21(8)
2.1.1 s-Polarization (TE)
23(1)
2.1.2 p-Polarization (TM)
24(1)
2.1.3 Some Comments
25(1)
2.1.4 Dispersion Relation
25(4)
3 Theory of the Fluctuating Electromagnetic Field
29(22)
3.1 Electromagnetic Fluctuations at Thermodynamical Equilibrium
29(9)
3.1.1 Electromagnetic Fluctuations and Linear Response Theory
29(5)
3.1.2 Electromagnetic Fluctuations in a Homogeneous Medium
34(4)
3.2 Electromagnetic Fluctuations for Nonequilibrium Systems
38(2)
3.3 Fluctuating Field in the Non-retarded Limit
40(11)
3.3.1 Interaction Energy Between a Charged Particle and a Solid: Image Potential
44(1)
3.3.2 Interaction Energy Between a Neutral Particle and a Solid: van der Waals Interaction
45(2)
3.3.3 Inelastic Electron Scattering from Surfaces
47(4)
4 Spectral Correlation Function for the Electromagnetic Field from Planar Sources
51(18)
4.1 Generalized Kirchhoff Law
51(5)
4.2 The Green's Function Approach
56(1)
4.3 Density of Emitted Electromagnetic Energy
57(3)
4.4 Local Density of States
60(2)
4.5 Coherence Properties of Planar Thermal Sources in the Near-Field
62(7)
4.5.1 Spatial Coherence in the Near-Field
63(2)
4.5.2 Temporal Coherence in the Near-Field
65(1)
4.5.3 Design of Coherent Thermal Sources
66(3)
5 The Casimir Forces
69(22)
5.1 Casimir Calculations
69(4)
5.2 Casimir Forces Between Two Plane-Parallel Surfaces
73(8)
5.2.1 General Formulas
73(5)
5.2.2 Limiting Cases
78(1)
5.2.3 Effect of Temperature
79(2)
5.3 Interaction of a Small Particle with a Plane Surface
81(5)
5.4 Interaction Between Small Particles
86(2)
5.5 Casimir Force Out of Thermal Equilibrium
88(3)
5.5.1 Force Between Identical Bodies
88(1)
5.5.2 Force Between Different Bodies
88(3)
6 Radiative Heat Transfer
91(32)
6.1 The Green's Function Theory
91(3)
6.2 The Scattering Matrix Theory
94(2)
6.3 General Formulas and Limiting Cases
96(6)
6.4 Resonant Photon Tunneling Enhancement of the Radiative Heat Transfer
102(1)
6.5 Adsorbate Vibrational Mode Enhancement of the Radiative Heat Transfer
103(3)
6.6 Vibrational Heating by Localized Photon Tunneling
106(5)
6.7 Radiative Heat Transfer Between a Small Particle and a Plane Surface
111(2)
6.8 Near-Field Radiative Heating in Ion Traps
113(3)
6.9 Radiative Heat Transfer Between Two Dipole Inside a N-Dipole System
116(3)
6.10 Local Heating of the Surface by an Atomic Force Microscope Tip
119(2)
6.11 A Nanoscale `Heat Stamp'
121(2)
7 Casimir Friction Between Two Plates
123(30)
7.1 Kubo Formula Approach
124(1)
7.2 Quantum Oscillator Model
125(4)
7.3 Casimir Friction Between Two Plane Surfaces in Parallel Relative Motion
129(4)
7.3.1 Discussion of General Formula and Limiting Cases
131(2)
7.4 Casimir Friction Between Two Semi-infinite Solids in Normal Relative Motion
133(4)
7.5 The Case of Good Conductors
137(7)
7.5.1 Parallel Relative Motion
137(3)
7.5.2 Normal Relative Motion
140(4)
7.6 Numerical Results
144(2)
7.7 The Case of Bad Conductors
146(3)
7.8 Resonant Photon Tunneling Enhancement of Casimir Friction
149(4)
7.8.1 Surface Phonon--Polariton Enhancement of Casimir Friction
149(1)
7.8.2 Adsorbate Vibrational Mode Enhancement of the van der Waals Friction
149(4)
8 Casimir Friction Between a Small Particle and a Plane Surface
153(36)
8.1 Friction Force on a Particle Moving Parallel to a Plane Surface: Non-relativistic Theory
153(3)
8.2 Friction Force on a Particle Moving Parallel to Plane Surface: Relativistic Theory
156(4)
8.3 Effect of Multiple Scattering of the Electromagnetic Waves
160(4)
8.4 Friction Force on Physisorbed Molecules
164(11)
8.4.1 Casimir Friction
166(1)
8.4.2 High-Order Processes
167(5)
8.4.3 Comparison of the Theory with Experiment
172(3)
8.5 Force on a Particle in a Thermal Field
175(14)
8.5.1 The Case of Small Velocities
175(1)
8.5.2 Relativistic Case
176(10)
8.5.3 Einstein's Formula
186(3)
9 Casimir Frictional Drag Force in Low-Dimensional Systems
189(22)
9.1 Introduction
189(2)
9.2 Fluctuating Electromagnetic Field
191(4)
9.3 Casimir Frictional Drag Force Between Two Quantum Wells
195(5)
9.4 Casimir Frictional Drag Induced by Liquid Flow in Low-Dimensional Systems
200(11)
9.4.1 Casimir Frictional Drag Between Two 2D Systems Induced by Liquid Flow
200(2)
9.4.2 Casimir Frictional Drag in a 2D System Induced by Liquid Flow in a Semi-infinite Chamber
202(2)
9.4.3 Casimir Frictional Drag in Low Dimensional Structures Induced by Liquid Flow in Infinite System
204(7)
10 Casimir Forces and Near-Field Radiative Heat Transfer in Graphene Structures
211(16)
10.1 Introduction
212(1)
10.2 The Casimir Forces in Graphene Systems
213(5)
10.3 Using Graphene to Detect Quantum Friction
218(3)
10.4 Casimir Frictional Drag Force Between Graphene Sheets
221(2)
10.5 Near-Field Radiative Heat Transfer Between Closely Spaced Graphene and Amorphous SiO2
223(4)
11 Radiation by Uniformly Moving Sources
227(16)
11.1 Vavilov-Cherenkov Effect
228(3)
11.2 Photon Emission and Anomalous Doppler Effect
231(2)
11.3 Quantum Friction Between Two Transparent Plates
233(5)
11.4 Quantum Friction Between a Particle and Transparent Plate
238(3)
11.5 Discussion
241(2)
12 Phononic Heat Transfer at Planar Interfaces
243(18)
12.1 Introduction
243(1)
12.2 Theory
244(4)
12.2.1 Solids
247(1)
12.2.2 Liquids
247(1)
12.2.3 Membranes
247(1)
12.3 Some Limiting Cases
248(2)
12.4 Phonon Heat Transfer at Disordered Interfaces: Friction Model
250(2)
12.5 Numerical Results
252(6)
12.5.1 Solid-Solid
252(1)
12.5.2 Solid-Liquid
253(1)
12.5.3 Solid-Membrane
253(5)
12.6 Role of Surface Roughness
258(2)
12.7 Summary
260(1)
13 Heat Transfer: Role of Surface Roughness
261(38)
13.1 Introduction
261(4)
13.2 Theory
265(14)
13.2.1 Heat Transfer Coefficient
265(2)
13.2.2 Calculation of α
267(1)
13.2.3 Heat Flow Through the Area of Real Contact
268(3)
13.2.4 Heat Flow Through the Non-contact Area
271(3)
13.2.5 (a) Radiative Contribution to α (in Vacuum)
274(3)
13.2.6 (b) Contribution to α from Heat Transfer via the Surrounding Gas or Liquid
277(1)
13.2.7 (c) Contribution to α from Heat Transfer via Capillary Bridges
278(1)
13.3 Contact Mechanics: Short Review and Basic Equations
279(3)
13.4 Numerical Results
282(2)
13.5 Role of Adhesion and Plastic Deformation
284(2)
13.6 Application to Tires
286(3)
13.7 Experimental Test of the Theory
289(3)
13.8 Experimental Results and Discussion
292(5)
13.9 Electric Contact Resistance
297(1)
13.10 Summary
297(2)
14 Electrostatic Friction
299(22)
14.1 Effect of a Bias Voltage and the Spatial Variation of the Surface Potential
299(7)
14.2 Friction Due to Spatial Fluctuations of Static Charge in the Bulk of the Sample
306(1)
14.3 Contact Electrification and the Work of Adhesion
307(9)
14.4 Influence of Attractive Force on Cantilever Eigenfrequencies
316(5)
15 Phonon and Internal Non-contact Friction
321(10)
15.1 Non-contact Friction Due to Excitation of Substrate Phonons
321(3)
15.2 Suppression of Electronic Friction in the Superconducting State
324(4)
15.3 Non-contact Friction Due to the Internal Friction of the Substrate
328(3)
15.3.1 van der Waals Interaction
329(2)
Appendix A Spectral Function of Fluctuations of the Electric Fields 331(2)
Appendix B Fluctuating Electromagnetic Field in the Vacuum Gap Between Two Plane Surfaces Moving Relative to Each Other 333(4)
Appendix C The Green's Function of the Electromagnetic Field in the Vacuum Gap Between Two Plane Surfaces 337(4)
Appendix D Reflection Amplitudes for Electromagnetic Waves for Medium with Spatial Dispersion 341(2)
Appendix E Fresnel's Reflection Amplitude for Surfaces with a Layer of Adsorbed Molecules 343(2)
Appendix F Comparison with the Results of Philbin and Leonhardt 345(4)
Appendix G Derivation of (7.57) and (7.58) 349(2)
Appendix H Derivation of the Friction Force on a Particle from the Energy Conservation Law 351(4)
Appendix I Derivation of (8.47) and (8.48) 355(4)
Appendix J Calculation of the Casimir Friction Between Plane Surfaces Using Quantum Field Theory 359(8)
Appendix K Calculation of the Casimir Friction Between a Small Particle and Plane Surface Using Quantum Field Theory 367(4)
Appendix L Derivation of (8.77) 371(2)
Appendix M Reflection Amplitudes for a 2D Quantum Well 373(2)
Appendix N Quantum VC Radiation in the Plate-Plate Configuration 375(4)
Appendix O Quantum VC Radiation in the Particle-Plate Configuration 379(6)
Appendix P Phononic Heat Transfer at Planar Interfaces 385(10)
Appendix Q Heat Transfer: Role of Surface Roughness 395(4)
Appendix R Friction Coefficient for Point Charges Moving Relative to a Plane Surface: Non-relativistic Theory 399(2)
Appendix S Attracting Force Between a Tip and a Flat Surface of a Body 401(2)
Appendix T Friction Coefficient due to Excitation of the Acoustic Waves 403(4)
References 407(12)
Index 419