Atnaujinkite slapukų nuostatas

El. knyga: Electromagnetic Wave Absorbers: Detailed Theories and Applications

(Tokai University, Japan)
  • Formatas: PDF+DRM
  • Išleidimo metai: 11-Sep-2019
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781119564140
  • Formatas: PDF+DRM
  • Išleidimo metai: 11-Sep-2019
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781119564140

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Addresses the importance of EM wave absorbers and details pertinent theory, design, and applications

Demands for various EM-wave absorbers are rapidly increasing along with recent trends toward complicated electromagnetic environments and development of higher-frequency communication equipment, including AI technology. This book provides a broad perspective on electromagnetic wave absorbers, as well as discussion of specific types of absorbers, their advantages and disadvantages, their applications, and performance verification.

Electromagnetic Wave Absorbers: Detailed Theories and Applications presents the theory behind wave absorbers and their practical usage in design of EM-wave absorber necessary particularly for EMC environments, and similar applications. The first half of the book contains the foundations of electromagnetic wave engineering, specifically the transmission line theories necessary for EM-wave absorber analysis, the basic knowledge of reflection, transmission, and absorption of electromagnetic waves, derivation of Maxwell's equations and computer analysis. The second half describes special mediums, absorber application examples, simplified methods of absorber design, autonomously controllable EM-wave absorber, and more. This valuable text:

  • Provides detailed explanations of basic theory and applied theory for understanding EM-wave absorbers
  • Discusses the material constant measurement methods of EM-wave absorption characteristics that are necessary for designing EM-wave absorbers
  • Includes examples of novel EM-wave absorber configurations

Electromagnetic Wave Absorbers: Detailed Theories and Applications is an ideal read for researchers and students concerned with electromagnetic wave engineering. It will also appeal to computer software engineers and electromagnetic field theory researchers.  

Preface xi
1 Fundamentals of Electromagnetic Wave Absorbers
1(16)
1.1 Introduction to Electromagnetic-Wave Absorbers
2(1)
1.2 Fundamentals of Absorber Characteristics
3(1)
1.3 Classifications of Absorbers
4(7)
1.3.1 Classifications by Appearance
4(1)
1.3.1.1 Single-layer-type Absorber
4(3)
1.3.1.2 Quarter-wavelength-type Absorber
7(1)
1.3.1.3 Multilayered Absorber
7(1)
1.3.1.4 Jaumann Absorber
7(1)
1.3.1.5 Sawtooth-shape Absorber
7(1)
1.3.1.6 Pyramidal Wave Absorber
7(1)
1.3.1.7 Absorbers by Artificial Materials and Special Materials
8(1)
1.3.2 Classifications of Material
8(1)
1.3.2.1 Conductive Absorber Material
8(1)
1.3.2.2 Dielectric Absorber Material
8(1)
1.3.2.3 Magnetic Absorber Material
8(1)
1.3.2.4 Metamaterial
8(1)
1.3.3 Classifications by Configuration Forms
9(1)
1.3.3.1 Classification from Layered Numbers
9(1)
1.3.4 Classifications by Frequency Characteristics
10(1)
1.3.4.1 Narrowband-type Absorber
10(1)
1.3.4.2 Broadband-type Absorber
10(1)
1.3.4.3 Ultra-wideband-type Absorber
11(1)
1.4 Application Examples of Wave Absorbers
11(2)
References
13(4)
2 Fundamental Theory of EM-Wave Absorbers
17(48)
2.1 Transmission Line Theory
17(11)
2.1.1 Transmission Line Equation
18(5)
2.1.2 Reflection Coefficient
23(1)
2.1.2.1 Reflection Coefficient at Load Terminal End
23(1)
2.1.2.2 Reflection Coefficient on Transmission Line
24(1)
2.1.2.3 Reflection Coefficient and Standing-Wave Ratio
25(1)
2.1.3 Transmission Line with Loss
26(1)
2.1.4 Reflection Coefficient in Transmission Line with Loss
27(1)
2.2 Smith Chart
28(12)
2.2.1 Principle of Smith Chart
28(6)
2.2.2 Admittance Chart
34(1)
2.2.3 Examples of Smith Chart Application
35(1)
2.2.3.1 Impedance of Transmission Line with Short-circuit Termination
35(1)
2.2.3.2 Matching Method with a Single Movable Stub
36(2)
2.2.3.3 Matching Method Using Fixed Multiple Stubs
38(2)
2.3 Fundamentals of Electromagnetic Wave Analysis
40(22)
2.3.1 Derivation of Maxwell's Equations
40(1)
2.3.1.1 Maxwell's First Electromagnetic Equation
41(2)
2.3.1.2 Maxwell's Second Electromagnetic Equation
43(2)
2.3.2 Wave Equations
45(2)
2.3.3 Reflection from Perfect Conductor in Normal Incidence
47(3)
2.3.4 Reflection and Transmission in Two Medium Interfaces
50(1)
2.3.4.1 Normal Incidence Cases
50(3)
2.3.4.2 Oblique Incidence
53(6)
2.3.5 Theory of Multiple Reflections
59(1)
2.3.5.1 Reflection and Transmission Coefficients
59(3)
2.A Appendix
62(1)
2.A.1 Appendix to Section 2.3.2 (1)
62(1)
References
63(2)
3 Methods of Absorber Analysis
65(18)
3.1 Normal Incidence to Single-layer Flat Absorber
65(3)
3.2 Oblique Incidence to Single-layer Flat Absorber
68(3)
3.3 Characteristics of the Multilayered Absorber
71(3)
3.3.1 Normal Incidence Case
71(2)
3.3.2 Case of Oblique Incidence
73(1)
3.3.2.1 Case of the TE Wave
73(1)
3.3.2.2 Case of the TM Wave
73(1)
3.4 Case of Multiple Reflected and Scattered Waves
74(6)
3.4.1 Standing Wave Ratio in Beat Generation
78(2)
3.A Appendix
80(1)
3.A.1 Appendix to Section 3.4.1 (1)
80(2)
References
82(1)
4 Basic Theory of Computer Analysis
83(62)
4.1 FDTD Analysis Method
84(18)
4.1.1 Basis of FDTD
84(2)
4.1.2 Methods of Time and Space Difference
86(1)
4.1.3 Relationship of Time Arrangement of the Electromagnetic Field
87(2)
4.1.4 Relationship of Spatial Arrangement of the Electromagnetic Field
89(2)
4.1.5 General Expressions of FDTD Analysis
91(4)
4.1.6 Absorbing Boundary Conditions
95(1)
4.1.7 Analysis Model and Boundary Conditions
95(2)
4.1.7.1 Behavior of the Periodic Boundary
97(1)
4.1.7.2 Behavior of the PLM Absorbing Boundary
98(1)
4.1.7.3 Behaviors at Variable Cell Size
99(2)
4.1.7.4 Convergence by Configuration Dimensions and Number of Cells
101(1)
4.2 Finite Element Method
102(10)
4.2.1 Foundation of the Finite Element Method
102(1)
4.2.1.1 Outline of the Finite Element Method
102(1)
4.2.1.2 History of FEM
102(1)
4.2.1.3 Variational Method as FEM Foundation
102(2)
4.2.1.4 Relationship Between Functional and Laplace Equation
104(1)
4.2.2 Summary of Analytical Procedures
105(1)
4.2.3 Example of Electrostatic Field Analysis
106(6)
4.2.4 Application of Electrostatic Field Analysis
112(1)
4.3 Three-Dimensional Electric Current Potential Method
112(27)
4.3.1 Outline of the Electric Current Vector Potential Method
112(1)
4.3.2 Basic Equation and Auxiliary Equation
113(3)
4.3.3 Formulations of the Basic and Auxiliary Equations
116(2)
4.3.4 Derivation of the Approximate Potential Function
118(4)
4.3.5 Discretization of the Basic Equation
122(1)
4.3.5.1 The First Term on the Right Side of Eq. (4.110)
122(2)
4.3.5.2 X Component in the First Term of the Basic Equation (4.110)
124(1)
4.3.5.3 Y Component in the First Term of Basic Equation (4.110)
125(1)
4.3.5.4 Z Component in the First Term of the Basic Equation (4.110)
125(1)
4.3.5.5 The Second Term on the Right Side of Eq. (4.110)
125(1)
4.3.5.6 X Component of the Second Term on the Right Side of the Basic Equation (4.110)
126(1)
4.3.5.7 The First Term of x Component in Eq. (4.133)
126(1)
4.3.5.8 The Second Term of the* Component in Eq. (4.133)
126(1)
4.3.5.9 The Third Term of the x Component in Eq. (4.133)
127(1)
4.3.6 Discretization of the Auxiliary Equation
128(1)
4.3.6.1 X Component in Eq. (4.144)
129(1)
4.3.7 General Potential Equation in Elements
130(2)
4.3.8 Example of the Analytical Model
132(2)
4.3.9 Unnecessary Current Absorber Analysis
134(5)
4.A Appendix
139(1)
4.A.1 Appendix to Section 4.3.4 (1)
139(3)
4.A.2 Appendix to Section 4.3.5 (1)
142(1)
4.A.3 Appendix to Section 4.3.5 (2)
143(1)
References
143(2)
5 Fundamental EM-Wave Absorber Materials
145(10)
5.1 Carbon Graphite
145(3)
5.2 Ferrite
148(4)
5.2.1 Soft Magnetic Material
148(1)
5.2.2 Spinel-type Magnetic Oxide
149(1)
5.2.2.1 Crystal Structure of Oxide
149(2)
5.2.2.2 Crystal Structure of Ferrite
151(1)
5.3 Hexagonal Ferrite
152(2)
References
154(1)
6 Theory of Special Mediums
155(62)
6.1 Chiral Medium
156(10)
6.1.1 Electromagnetic Fields in Chiral Medium
158(2)
6.1.2 Electromagnetic-Field Reflection by Chiral Medium
160(6)
6.2 Theory of Magnetized Ferrite
166(13)
6.2.1 Foundation of Equation of Magnetization Motion
167(3)
6.2.2 Tensor Susceptibility
170(1)
6.2.2.1 Lossless Medium Case
170(4)
6.2.2.2 Loss Medium Case
174(5)
6.3 MW-Propagation of Circular Waveguide with Ferrite
179(13)
6.3.1 Derivation of Fundamental Equations
179(3)
6.3.2 Derivation of Electromagnetic-Field Components
182(3)
6.3.3 Circular Waveguide with Ferrite
185(1)
6.3.3.1 Ferrite Fully Filled Case
185(1)
6.3.3.2 Ferrite Partially Filled Case
186(2)
6.3.4 Coaxial Waveguide with Ferrite
188(4)
6.4 Metamaterial
192(6)
6.4.1 Metamaterial Oudines
192(3)
6.4.2 Metamaterial Theories
195(1)
6.4.2.1 Left-Handed and Right-Handed Systems
195(1)
6.4.2.2 Conversion from Material to Transmission Line Concept
196(2)
6.A.3 Negative Permittivity and Permeability
198(4)
6.4.A Negative Refractive Index Medium
202(4)
6.4.5 Metamaterial as a Medium
204(1)
6.4.6 Metamaterial Absorber
205(1)
6.A Appendix
206(7)
6.A.1 Appendix to Section 6.1.2 (1)
206(1)
6.A.2 Appendix to Section 6.2.2 (1)
207(1)
6.A.3 Appendix to Section 6.2.2 (2)
208(1)
6.A.4 Appendix to Section 6.3.1 (1)
209(1)
6.A.5 Appendix to Section 6.3.1 (2)
210(2)
6.A.6 Appendix to Section 6.3.1 (3)
212(1)
References
213(4)
7 Measurement Methods on EM-Wave Absorbers
217(30)
7.1 Material Constant Measurement Methods
217(18)
7.1.1 Standing-Wave Method
218(1)
7.1.1.1 Case of Using Waveguide
218(3)
7.1.1.2 Method of Using Coaxial Waveguides
221(4)
7.1.2 Cavity Resonator Method
225(1)
7.1.2.1 Method of Micro-sample Insertion
225(5)
7.1.2.2 Complex Permittivity Measurement
230(3)
7.1.2.3 Complex Permeability Measurement
233(2)
7.2 Measurement of EM-Wave Absorption Characteristics
235(7)
7.2.1 Method of Using TEM Mode Transmission Line
235(1)
7.2.1.1 Coaxial Waveguide Method
236(1)
7.2.1.2 Strip Line Method
237(1)
7.2.1.3 TEM Cell Method
238(1)
7.2.2 Waveguide Method
239(1)
7.2.3 Space Standing-Wave Method
240(2)
7.A Appendix
242(2)
7.A.1 Appendix to Section 7.1.2 (1)
242(1)
7.A.2 Appendix to Section 7.1.2 (2)
243(1)
7.A.3 Appendix to Section 7.1.2 (3)
243(1)
7.A.4 Appendix to Section 7.1.2 (4)
244(1)
References
244(3)
8 Configuration Examples of the EM-wave Absorber
247(18)
8.1 Quarter-wave-Type Absorber
247(5)
8.2 Single-Layer-Type Absorber
252(1)
8.2.1 Ferrite Absorber
252(1)
8.3 Two-Layered Absorber
253(2)
8.4 Applications as Building Material
255(5)
8.4.1 TV Ghost Prevention Measures
255(3)
8.4.2 Ferrite Core-Embedded PC Board
258(2)
8.5 Low-Reflective Shield Building Materials
260(2)
References
262(3)
9 Absorber Characteristic Control by Equivalent Transformation Method of Material Constants
265(34)
9.1 Basic Concepts and Means
265(1)
9.2 Examples of ETMMC Absorbers
266(30)
9.2.1 Microchip Integrated -type Absorber
266(3)
9.2.2 Absorber with Small Holes
269(2)
9.2.2.1 Effect of Square Hole Size
271(1)
9.2.2.2 Effect of Adjacent Hole Space
272(1)
9.2.2.3 Relation of Absorber Thickness and Hole Dimensions
272(2)
9.2.3 Absorber with Square Conductive Elements
274(2)
9.2.3.1 Effect of Conductor Dimensions
276(3)
9.2.3.2 Input Admittance Characteristics
279(2)
9.2.4 Absorber with Line-Shaped Conductive Elements
281(1)
9.2.4.1 Lattice Type
282(1)
9.2.4.2 Cross Type
283(1)
9.2.4.3 Square Conductive Line Frame
284(4)
9.2.4.4 Double-Layered PCLF Type
288(3)
9.2.5 Absorber Based on Integrated Circuit Concept
291(1)
9.2.5.1 Configuration of Absorber
291(4)
9.2.5.2 Space Experiment Characteristic
295(1)
References
296(3)
10 Autonomous Controllable-Type Absorber
299(18)
10.1 Autonomous Control-type Metamaterial
299(2)
10.2 Configurations of the ACMM Absorber
301(1)
10.3 The Main Point as the Technical Breakthrough
302(2)
10.4 Characteristics as the EM-Wave Absorber
304(7)
10.4.1 Complicated Wiring Problems
305(1)
10.4.2 Controlling the Problem of Absorber Characteristics
305(1)
10.4.3 Stability of Wave Absorption Characteristics
306(1)
10.4.4 Oblique Incidence Characteristics
306(2)
10.4.5 Controllability of Frequency Characteristic
308(1)
10.4.6 Broadband Characteristic
308(3)
10.5 Input Impedance Characteristic
311(2)
10.6 Examples of Application Fields
313(1)
References
314(3)
Index 317
YOUJI KOTSUKA, PHD, is a professor emeritus of Telecommunication Engineering at Tokai University, Tokyo, and a visiting professor at Harvard University, Cambridge, from 1995 to 1996. He has served as chair of the committees on Biological Effect of EM-waves and Medical Application and Measurement Technic in the Institute of Electrical Engineering Japan (IEE). He is a chair of the Japan Technical Committee on EMC in the Institute of Electronics, Information and Communication Engineers (IEICE). He is also a chair in IEEE-EMC, Japan Chapter. He is a co-editor of the November 2000 special issue on Medical Applications and Biological Effect of RF/ Microwaves, part of IEEE Transactions on Microwave Theory and Techniques. He has authored and co-authored books such as EMC Handbook and the Wiley title RF/Microwave Interaction with Biological Tissues.