Atnaujinkite slapukų nuostatas

El. knyga: Electronic Processes in Non-Crystalline Materials

(Former Cavendish Professor of Physics at the University of Cambridge), (Department of Physics and Astronomy, University of Leicester, and Department of Materials Science and Metallurgy, University of Cambridge)

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Since the first edition of this highly successful book the field saw many great developments both in experimental and theoretical studies of electrical properties of non-crystalline solids. It became necessary to rewrite nearly the whole book, while the aims of the second edition remained the same: to set out the theoretical concepts, to test them by comparison with experiment for a wide variety of phenomena, and to apply them to non-crystalline materials. Sir Nevill Mott shared the 1977 Nobel Prize for Physics, awarded for his research work in this field. The reissue of this book as part of the Oxford Classic Texts in the Physical Sciences is a reprint of the second edition which was published in 1979.

Recenzijos

The book will be invaluable as a research source book for solid state scientists and students interested in the physics of disordered systems. * Philosophical Magazine B * The book represents the single work which provides a focus to a field that, before Mott and Davis, had a divergent breadth. It is fitting that the Nobel Prize in physics was awarded to Sir Nevill Mott for contributions to this field, many of which are included in this book. * D.C. Licciardello, Nature * Not only a delight to read but also essential reading for anyone working in this exciting field. * A. J. Leadbetter, The Times Higher Education Supplement, 1980 *

1 Introduction
1(6)
2 Theory Of Electrons In A Non-Crystalline Medium
7(58)
2.1 Introduction
7(4)
2.2 The Kubo---Greenwood formula
11(4)
2.3 Anderson localization
15(7)
2.4 Situation in which states are localized in one range of energies and not localized in another
22(5)
2.5 Photon-activated hopping; the ω law
27(1)
2.6 The minimum metallic conductivity
28(4)
2.7 Hopping and variable-range hopping
32(5)
2.8 The Anderson transition
37(2)
2.9 Mobility and percolation edges
39(3)
2.10 Conductors, insulators, and semiconductors
42(8)
2.11 Semimetals and pseudogaps
50(1)
2.12 Some calculations of the density of states
51(1)
2.13 Thermopower
52(4)
2.14 Hall effect
56(3)
2.15 Hopping conduction for alternating currents
59(3)
2.16 One-dimensional problems
62(3)
3 Phonons And Polarons
65(33)
3.1 Introduction
65(1)
3.2 Distortion round a trapped electron
66(3)
3.3 Dielectric and acoustic polarons
69(4)
3.4 Rate of loss of energy by free carriers
73(2)
3.5 Transitions between localized states
75(14)
3.5.1 Introduction
75(1)
3.5.2 Single-phonon hopping processes
76(2)
3.5.3 Multiphonon processes
78(11)
3.6 Motion of a polaron in a crystal
89(1)
3.7 Trapped and localized polarons
90(1)
3.8 Thermopower due to polarons
91(1)
3.9 Hall effect due to polarons and other forms of hopping
92(1)
3.10 Examples of hopping polarons
93(1)
3.11 Degenerate gas of polarons
94(1)
3.12 Charge transport in strong fields
95(3)
4 The Fermi Glass And The Anderson Transition
98(63)
4.1 Introduction
98(3)
4.2 Metal-insulator transitions in crystals
101(10)
4.2.1 Band-crossing transitions
101(3)
4.2.2 Hubbard bands and the Mott transition
104(5)
4.2.3 Wigner crystallization
109(1)
4.2.4 Effect of disorder on Mott transitions
109(1)
4.2.5 Effect of correlation and distortion on Anderson tran-sitions
110(1)
4.3 Doped semiconductors
111(19)
4.3.1 Impurity conduction; direct current
111(6)
4.3.2 Impurity conduction; alternating currents
117(2)
4.3.3 Metal-insulator transitions in doped semiconductors
119(7)
4.3.4 Metal-insulator transitions in metal-rare-gas systems
126(1)
4.3.5 Metal-insulator transitions in compensated semiconduc-tors
127(3)
4.4 Anderson transition in a pseudogap; magnesium-bismuth alloys
130(2)
4.5 Anderson transition of type II; Amorphous films of Fe-Ge
132(3)
4.6 Two-dimensional conduction in an inversion layer
135(4)
4.7 Fermi glasses where lattice distortion is important
139(13)
4.7.1 Impurity conduction in nickel oxide
140(2)
4.7.2 Conduction in glasses containing transition-metal ions
142(2)
4.7.3 Lanthanium strontium vanadate (La1-xSrxVO3)
144(1)
4.7.4 Pyrolytic carbons
145(1)
4.7.5 Cerium sulphide
146(2)
4.7.6 Metal-insulator transitions in tungsten bronzes
148(2)
4.7.7 Vanadium monoxide (VOx)
150(2)
4.8 Impurity conduction in magnetic semiconductors
152(5)
4.9 Granular metal films
157(3)
4.10 Polycrystalline aggregates
160(1)
5 Liquid Metals And Semimetals
161(38)
5.1 Introduction
161(2)
5.2 Scattering of electrons by a random distribution of centres; degenerate semiconductors
163(2)
5.3 Resistivity of liquid metals; Ziman's theory
165(5)
5.4 Resistivity of liquid alloys
170(2)
5.5 Thermoelectric power of liquid metals
172(1)
5.6 Hall effect in liquid metals
172(1)
5.7 Density of states
173(1)
5.8 Change of Knight shift on melting
174(1)
5.9 X-ray emission spectra and photoemission
175(1)
5.10 Liquid transition and rare-earth metals
176(1)
5.11 Amorphous metals and grain boundaries
177(2)
5.12 Injected electrons in liquid rare gases
179(2)
5.13 Liquid semimetals and semiconductors
181(4)
5.14 Liquid systems in which the depth of the pseudogap changes with volume
185(5)
5.14.1 Mercury
185(4)
5.14.2 Caesium
189(1)
5.15 Liquid alloys with pseudogaps in which the composition is varied
190(4)
5.16 Liquid systems in which the depth of the pseudogap changes with temperature
194(5)
5.16.1 Tellurium
194(3)
5.16.2 Some liquid alloys of tellurium
197(2)
6 Non-Crystalline Semiconductors
199(121)
6.1 Introduction
199(1)
6.2 Preparation and classification of materials
200(4)
6.3 Methods of determining structure
204(5)
6.4 Electrical properties of non-crystalline semiconductors
209(38)
6.4.1 Density of states
210(5)
6.4.2 The mobility edge
215(4)
6.4.3 Temperature dependence of the d.c. conductivity
219(3)
6.4.4 Behaviour in the liquid state
222(1)
6.4.5 a.c. conductivity
223(12)
6.4.6 Thermopower
235(5)
6.4.7 Hall effect
240(2)
6.4.8 Magnetoresistance
242(1)
6.4.9 Field effect
243(4)
6.5 Drift mobility and photoconduction
247(23)
6.5.1 Drift mobility
247(7)
6.5.2 Photoconductivity
254(11)
6.5.3 Quantum efficiency
265(5)
6.6 Conduction at a mobility edge versus hopping
270(2)
6.7 Optical absorption
272(33)
6.7.1 Absorption edges and Urbach's rule
273(12)
6.7.2 Effect of externally applied fields
285(2)
6.7.3 Interband absorption
287(6)
6.7.4 Absorption at high energies
293(4)
6.7.5 Intraband absorption
297(3)
6.7.6 Photoluminescence
300(1)
6.7.7 Vibrational spectra. Density of phonon modes
301(4)
6.8 Other measurements
305(15)
6.8.1 Specific heat and thermal conductivity
305(5)
6.8.2 Photoemission and density of states
310(4)
6.8.3 Electron spin resonance
314(6)
7 Tetrahedrally-Bonded Semiconductors--- Amorphous Germanium And Silicon
320(88)
7.1 Methods of preparation
320(2)
7.2 Structure of amorphous Ge and Si
322(11)
7.3 Voids, impurities and other defects in amorphous Ge and Si
333(12)
7.4 Electrical properties of amorphous germanium
345(17)
7.5 Electrical properties of amorphous silicon
362(13)
7.6 Optical properties of amorphous germanium
375(9)
7.7 Optical properties of amorphous silicon
384(12)
7.8 Density of states in the valence and conduction bands of amor-phous germanium and silicon
396(12)
8 Arsenic And Other Three-Fold Co-Ordinated Materials
408(34)
8.1 Introduction
408(1)
8.2 Forms and preparation of arsenic
408(2)
8.3 Structure of amorphous arsenic
410(9)
8.4 Electrical properties of amorphous arsenic
419(7)
8.5 Optical properties of amorphous arsenic and the density of states in the bands
426(8)
8.6 States in the gap of amorphous arsenic
434(5)
8.7 Amorphous antimony, phosphorus, and related materials
439(3)
9 Chalcogenide And Other Glasses
442(75)
9.1 Introduction
442(3)
9.2 Structure
445(7)
9.3 Electrical properties of chalcogenide glasses
452(8)
9.3.1 Introduction
452(5)
9.3.2 d.c. conductivity
457(1)
9.3.3 Thermopower
458(1)
9.3.4 Hall effect
459(1)
9.4 States in the gap
460(10)
9.4.1 Introduction
460(8)
9.4.2 Screening length
468(1)
9.4.3 Field effect
469(1)
9.5 Drift mobility
470(4)
9.6 Luminescence
474(9)
9.7 Photoconductivity
483(1)
9.8 Effect of alloying on the dark current
484(4)
9.9 Numerical values in the model of charged dangling bonds
488(2)
9.10 Charge transport in strong fields
490(1)
9.11 Density of electron states in conduction and valence bands
491(6)
9.12 Optical properties
497(10)
9.13 Switching in alloy glasses
507(5)
9.14 Oxide glasses
512(5)
10 Selenium, Tellurium, And Their Alloys
517(31)
10.1 Structure of amorphous selenium and tellurium
517(4)
10.2 Optical properties of amorphous selenium and tellurium
521(9)
10.3 Electrical properties of amorphous selenium
530(13)
10.3.1 Electrical conductivity
530(4)
10.3.2 Drift mobilities
534(5)
10.3.3 Carrier lifetimes and ranges
539(1)
10.3.4 Photogeneration in amorphous Se; xerography
540(3)
10.4 Some properties of liquid selenium and Se-Te alloys
543(5)
References 548(35)
Index 583
Nevill Francis Mott was a former Cavendish Professor of Physcis at the University of Cambridge. He shared the 1977 Nobel Prize for Physics, awarded for his research work in this field.



Edward Davis is Emeritus Professor in the Department of Physics and Astronomy at the University of Leicester and Distinguished Research Fellow in the Department of Materials Science and Metallurgy at the University of Cambridge.