Atnaujinkite slapukų nuostatas

El. knyga: Electrospinning: Nanofabrication and Applications

Edited by (Vice Dean, College of Textiles, Donghua University, Shanghai, China), Edited by (Professor, College of Textiles, Donghua University, Shanghai, China), Edited by (Professor of Textile Science & Engineering, Chinese Engineering Academy, China)
  • Formatas: EPUB+DRM
  • Serija: Micro & Nano Technologies
  • Išleidimo metai: 12-Nov-2018
  • Leidėjas: William Andrew Publishing
  • Kalba: eng
  • ISBN-13: 9780128134412
  • Formatas: EPUB+DRM
  • Serija: Micro & Nano Technologies
  • Išleidimo metai: 12-Nov-2018
  • Leidėjas: William Andrew Publishing
  • Kalba: eng
  • ISBN-13: 9780128134412

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Electrospinning: Nanofabrication and Applications presents an overview of the electrospinning technique, nanofabrication strategies and potential applications. The book begins with an introduction to the fundamentals of electrospinning, discussing fundamental principles of the electrospinning process, controlling parameters, materials and structures. Nanofabrication strategies, including coaxial electrospinning, multi-needle electrospinning, needleless electrospinning, electro-netting, near-field electrospinning, and three-dimensional macrostructure assembling are also covered. Final sections explore the applications of electrospun nanofibers in different fields and future prospects. This is a valuable reference for engineers and materials scientist working with fibrous materials and textiles, as well as researchers in the areas of nanotechnology, electrospinning, nanofibers and textiles.

  • Explores controllable fabrication of electrospun nanomaterials and their multifunctional applications
  • Explains the electrospinning technique as used in nanofabrication and nanofibers
  • Outlines the applications of electrospun nanofibrous materials in tissue engineering, filtration, oil-water separation, water treatment, food technology, supercapacitors, sensors and so on
Contributors xix
Part 1 Fundamentals Of Electrospinning
Chapter 1 Introduction and Historical Overview
3(18)
Aijaz Ahmed Babar
Nousheen Iqbal
Xianfeng Wang
Jianyong Yu
Bin Ding
1.1 Introduction
3(4)
1.1.1 Nanofabrication: The Road to Excellence
3(1)
1.1.2 Potential Applications of One-Dimensional Nanomaterials
3(2)
1.1.3 One-Dimensional Nanofabrication Techniques
5(2)
1.2 Electrospinning
7(5)
1.2.1 Overview
7(1)
1.2.2 History of Electrospinning
8(3)
1.2.3 Modern Electrospinning Technology
11(1)
1.3 Nanofibers: Solving Global Issues
12(2)
1.4 Outlook
14(1)
Acknowledgments
15(1)
References
15(6)
Chapter 2 Electrospinning: The Setup and Procedure
21(32)
Yun-Ze Long
Xu Yan
Xiao-Xiong Wang
Jun Zhang
Miao Yu
2.1 Basic Electrospinning Setup and Procedure
21(4)
2.1.1 Applied Voltage
22(1)
2.1.2 Tip-to-Collector Distance
23(1)
2.1.3 Solution Flow Rate
24(1)
2.1.4 Other Parameters
24(1)
2.2 Modification of Electrospinning Setup: Collector
25(6)
2.2.1 Rotating Collectors
26(1)
2.2.2 Other Rotating Collectors
27(2)
2.2.3 Static Collectors
29(1)
2.2.4 Precision-Deposited Collectors
30(1)
2.3 Modification of Electrospinning Setup: Spinneret
31(7)
2.3.1 Coaxial Spinneret
32(1)
2.3.2 Gas-Assistant Spinneret
33(1)
2.3.3 Two-Component Spinneret
33(1)
2.3.4 Pointed-Tip Spinneret
34(1)
2.3.5 Centrifugal Electrospinning Spinneret
35(1)
2.3.6 Reciprocating-Type Spinneret
36(1)
2.3.7 Multineedle and Tube Spinnerets
37(1)
2.4 Portable Electrospinning Setup
38(7)
2.4.1 Plug-Dependent Portable Electrospinning Setup
38(2)
2.4.2 Battery-Operated Portable Electrospinning Setup
40(2)
2.4.3 Other Portable Electrospinning Setups
42(3)
2.5 Industrial Electrospinning Setups
45(2)
Acknowledgments
47(1)
References
47(6)
Chapter 3 Nanofibrous Materials
53(40)
Zezhou Yang
Ce Wang
Xiaofeng Lu
3.1 Electrospun Polymeric Nanofibers
53(9)
3.1.1 Electrospun Natural Polymeric Nanofibers
53(7)
3.1.2 Electrospun Synthetic Polymeric Nanofibers
60(2)
3.2 Electrospun Inorganic Nanofibers
62(9)
3.2.1 Electrospun Oxide Nanofibers
62(4)
3.2.2 Carbon-Based and Nitrogen-Based Nanofibers
66(2)
3.2.3 Metal Nanofibers
68(2)
3.2.4 Multicomponent Inorganic Nanofibers
70(1)
3.3 Electrospun Polymer/Inorganic Composite Nanofibers
71(9)
3.3.1 Polymer/Metal Composite Nanofibers
71(4)
3.3.2 Polymer/Metal Oxide Composite Nanofibers
75(3)
3.3.3 Polymer/Carbon-Based Composite Nanofibers
78(1)
3.3.4 Polymer/Metal Sulfide Composite Nanofibers
79(1)
3.3.5 Other Polymer/Inorganic Composite Nanofibers
80(1)
3.4 Conclusions
80(1)
References
80(13)
Chapter 4 Nanofibrous Structures
93(32)
Seema Agarwal
Shaohua Jiang
Andreas Greiner
4.1 Introduction
93(2)
4.2 Nano over Micro, Meso, and Macro
95(1)
4.3 Production Methods of Nanofibrous Structures
96(21)
4.3.1 Bottom-Up Approaches
96(7)
4.3.2 Top-Down and Special Approaches
103(3)
4.3.3 Nanostructures by Electrospinning
106(11)
4.4 Utility of Nanofibrous Structures
117(2)
References
119(6)
Part 2 Nanofabrication Strategies From Electrospinning
Chapter 5 Coaxial Electrospinning
125(76)
Nu Wang
Yong Zhao
5.1 Introduction
125(2)
5.2 The Structures of Various Fibers
127(39)
5.2.1 Core-Shell Structure
127(4)
5.2.2 Hollow Structure
131(9)
5.2.3 Side-by-Side Electrospinning
140(7)
5.2.4 Multifluidic Electrospinning
147(13)
5.2.5 Electrospray Microcapsules
160(6)
5.3 Applications of Coelectrospun Fibers
166(29)
5.3.1 Drug Release
166(3)
5.3.2 Tissue Engineering
169(3)
5.3.3 Batteries
172(6)
5.3.4 Supercapacitors
178(2)
5.3.5 Photocatalysts
180(5)
5.3.6 Other Applications
185(10)
5.4 Conclusion and Future Perspective
195(1)
References
195(6)
Chapter 6 Multineedle Electrospinning
201(18)
Jianxin He
Yuman Zhou
6.1 Introduction to the Multineedle Electrospinning System
201(1)
6.1.1 Principle of Multineedle Electrospinning
201(1)
6.1.2 Necessary Conditions for Multineedle Electrospinning
202(1)
6.2 Multineedle Electrospinning Modes
202(7)
6.2.1 Linear Increase in Needle Number
202(1)
6.2.2 Design of Arrangement of Positions for Multiple Needles
203(1)
6.2.3 Improved Multineedle Electrospinning
204(5)
6.3 Large-Scale Multineedle Electrospinning
209(2)
6.4 Diversified Product Forms of Multineedle Electrospinning
211(5)
6.4.1 Nanofiber Composite Membrane Prepared by Multineedle Electrospinning
211(2)
6.4.2 Preparation of a Nanofiber Yarn Based on Multineedle Electrospinning
213(3)
6.5 Conclusion
216(1)
References
216(3)
Chapter 7 Needle-Less Electrospinning
219(30)
Guilong Yan
Haitao Niu
Tong Lin
7.1 Introduction
219(2)
7.2 Needle-Less Electrospinning With Motionless Spinnerets
221(9)
7.2.1 Magnetic Fluid
221(1)
7.2.2 Bubble Spinneret
221(2)
7.2.3 Cleft Spinneret
223(1)
7.2.4 Stepped Pyramid
224(1)
7.2.5 Wire Spinnerets
224(3)
7.2.6 Bowl
227(1)
7.2.7 Plate Edge
227(1)
7.2.8 Slit or Slot
228(1)
7.2.9 Porous Tube
228(2)
7.3 Needle-Less Electrospinning with Moving Spinnerets
230(5)
7.3.1 Cylinder or Drum
230(1)
7.3.2 Ball
230(2)
7.3.3 Beaded Chain
232(1)
7.3.4 Disk
232(1)
7.3.5 Coil
233(1)
7.3.6 Cone
233(1)
7.3.7 Wire Frame
234(1)
7.3.8 A Summary of Needle-Less Electrospinning Spinnerets
234(1)
7.4 Needle-Less Electrospinning Enhanced by External Force Fields
235(1)
7.4.1 Centrifugal Force
235(1)
7.4.2 Airflow
236(1)
7.5 Needle-Less Electrospinning Technique Disclosed in Patents
236(6)
7.6 Needle-Less Electrospinning Machines
242(2)
7.7 Issues Associated with Needle-Less Electrospinning
244(1)
7.8 Summary
244(1)
References
244(5)
Chapter 8 Electronetting
249(34)
Shichao Zhang
Hui Liu
Ning Tang
Jianyong Yu
Bin Ding
8.1 Introduction
249(1)
8.2 Electronetting Nanotechnology
250(2)
8.2.1 Origin and Definition
250(1)
8.2.2 Basic Setup
251(1)
8.3 Nanofiber/Nanonet Membranes
252(12)
8.3.1 Formation Mechanisms
252(6)
8.3.2 Structural Properties
258(2)
8.3.3 Polymers Used in Electronetting
260(4)
8.4 Effects of Various Parameters on Electronetting
264(7)
8.4.1 Solution Properties
264(5)
8.4.2 Process Parameters
269(1)
8.4.3 Ambient Parameters
270(1)
8.5 Application of Nanofiber/Nanonet Membranes
271(5)
8.5.1 Sensor Application
271(3)
8.5.2 Air Filtration
274(1)
8.5.3 Tissue Engineering
275(1)
8.5.4 Other Applications
275(1)
8.6 Concluding Remarks and Perspectives
276(1)
Acknowledgments
276(1)
References
276(7)
Chapter 9 Near-Field Electrospinning
283(38)
Gaofeng Zheng
Jiaxin Jiang
Dezhi Wu
Daoheng Sun
9.1 Introduction
283(1)
9.2 Mechanism and Jet Behavior of Near-Field Electrospinning
284(4)
9.2.1 Near-Field Electrospinning With a Solid-Tip Spinneret
284(2)
9.2.2 Continuous Near-Field Electrospinning With a Hollow Spinneret
286(1)
9.2.3 Control Theory of Near-Field Electrospinning
287(1)
9.3 Electrohydrodynamic Direct Writing Based on Near-Field Electrospinning
288(11)
9.3.1 Micro-Silk Ribbon Electrohydrodynamic Direct Writing
288(2)
9.3.2 Drop-on-Demand Electrohydrodynamic Printing
290(1)
9.3.3 Near-Field Electrospray
291(1)
9.3.4 Alternating Current Electrohydrodynamic Direct Writing
291(2)
9.3.5 Multinozzle Electrohydrodynamic Direct Writing
293(1)
9.3.6 Mechanoelectrospinning Direct Writing
294(2)
9.3.7 Sheath Gas-Assisted Electrohydrodynamic Direct Writing
296(1)
9.3.8 Tip-Induced Electrohydrodynamic Direct Writing
297(2)
9.4 Electrohydrodynamic Direct-Write Micro/Nanostructures
299(5)
9.4.1 Direct-Write Orderly Nanofibers
299(1)
9.4.2 Direct-Write Nanofibrous 2D Patterns
300(2)
9.4.3 Direct-Write 3D Structures
302(2)
9.5 Applications of Near-Field Electrospinning
304(8)
9.5.1 Nanofluidic Chips
305(1)
9.5.2 Sensors
305(2)
9.5.3 Energy Generators
307(1)
9.5.4 Biotissues
308(2)
9.5.5 Flexible Electronics
310(2)
9.5.6 Optical Devices
312(1)
9.6 Summary and Future Work
312(2)
Acknowledgments
314(1)
References
314(7)
Chapter 10 Centrifugal Spinning-High Rate Production of Nanofibers
321(18)
Chen Chen
Mahmut Dirican
Xiangwu Zhang
10.1 Introduction
321(1)
10.2 A Brief History of Centrifugal Spinning
322(2)
10.3 Fiber Formation
324(1)
10.4 Centrifugal Spinning System
325(2)
10.4.1 Rotating Spinning Head
325(1)
10.4.2 Nanofiber Collecting System
326(1)
10.5 Types of Materials for Centrifugal Spinning
327(2)
10.5.1 Polymer Fibers
327(1)
10.5.2 Carbon Fibers
327(2)
10.5.3 Ceramic Fibers
329(1)
10.6 Effect of Processing Parameters on Centrifugally Spun Fiber Structure
329(2)
10.6.1 Spinning Fluid Properties
329(1)
10.6.2 Centrifugal Spinning Processing Conditions
330(1)
10.7 Application of Centrifugal Spinning Products
331(3)
10.7.1 Biomedical Applications
331(2)
10.7.2 Energy Storage Applications
333(1)
10.8 Electrocentrifugal Spinning
334(2)
10.9 Summary
336(1)
References
337(2)
Chapter 11 Melt Electrospinning
339(26)
Weimin Yang
Haoyi Li
Xiaoqing Chen
11.1 Introduction
339(1)
11.2 Historical Perspective
340(3)
11.3 Principles of Melt Electrospinning
343(2)
11.3.1 Melt Viscosity
343(1)
11.3.2 Load Voltage
343(1)
11.3.3 Jet Characteristics
343(1)
11.3.4 Fiber Fineness
344(1)
11.3.5 Temperature and Humidity of Environment
344(1)
11.4 Process Research and Fiber Diameter
345(2)
11.4.1 Basic Process Parameters
345(1)
11.4.2 Material Characteristics
345(1)
11.4.3 Airflow Auxiliary Parameters
346(1)
11.4.4 Laser Auxiliary Parameters
346(1)
11.5 Configurations of Melt Electrospinning Setups
347(7)
11.5.1 Single Needle
348(1)
11.5.2 Multiple Needles
349(1)
11.5.3 Needle-Less Melt Differential Electrospinning
349(5)
11.6 Industrial Potential Applications of Melt Electrospinning
354(2)
11.6.1 Oil Sorption
354(1)
11.6.2 Filtration
354(1)
11.6.3 Biomedical Sciences
355(1)
11.6.4 Textiles
355(1)
11.6.5 Other Applications
355(1)
11.7 Conclusions and Future Perspectives
356(1)
References
356(9)
Part 3 Applications Of Electrospun Nanofibers
Chapter 12 Electrospun Nanofibers for Air Filtration
365(26)
Shichao Zhang
Nadir Ali Rind
Ning Tang
Hui Liu
Xia Yin
Jianyong Yu
Bin Ding
12.1 Introduction
365(1)
12.2 Electrospun Nanofiber Filters
366(3)
12.2.1 Structural and Performance Advantages
366(1)
12.2.2 Filtration Mechanisms
367(2)
12.3 Polymeric Nanofiber-Based Filters
369(4)
12.3.1 Single-Component Polymer Membranes
370(1)
12.3.2 Composite Polymer Membranes
371(2)
12.4 Hybrid Nanofiber-Based Filters
373(4)
12.4.1 Polymer/Organic Nanoparticle Membranes
373(2)
12.4.2 Polymer/Inorganic Nanoparticle Membranes
375(2)
12.5 Nanofiber/Net-Based Filters
377(6)
12.5.1 Nanofiber/Net Membranes
377(1)
12.5.2 Nanofiber/Net Membranes with Cavity Structures
378(3)
12.5.3 Nanofiber/Net Composite Membranes
381(2)
12.6 Inorganic Nanofiber-Based Filters
383(2)
12.7 Concluding Remarks and Perspectives
385(1)
Acknowledgments
385(1)
References
385(6)
Chapter 13 Electrospun Nanofibers for Oil-Water Separation
391(28)
Jianlong Ge
Qiuxia Fu
Jianyong Yu
Bin Ding
13.1 Introduction
391(3)
13.2 Electrospun Nanofibrous Absorbents for Oil-Spill Cleanup
394(5)
13.2.1 Instinctive Hydrophobic-Oleophilic Polymeric Nanofibrous Mats
394(1)
13.2.2 Composite Polymeric Nanofibrous Mats
395(1)
13.2.3 Carbon-Based Porous Nanofibrous Mats
396(3)
13.3 Electrospun Nanofibrous Filter Membranes for Oil-Water Separation
399(11)
13.3.1 Hydrophobic-Oleophilic Membranes for Oil-Water Separation
399(3)
13.3.2 Hydrophilic-Oleophobic Membranes for Oil-Water Separation
402(6)
13.3.3 Membranes with Controllable Wetting Ability for Oil-Water Separation
408(2)
13.4 Electrospun Nanofibrous Aerogels for Oil-Water Separation
410(2)
13.5 Conclusions and Future Perspectives
412(1)
Acknowledgments
413(1)
References
413(6)
Chapter 14 Electrospun Nanofibers for Water Treatment
419(36)
Cheng Cheng
Xiong Li
Xufeng Yu
Min Wang
Xuefen Wang
14.1 Introduction
419(2)
14.2 Nanofiber Membranes
421(10)
14.2.1 Affinity Membranes for Adsorption
421(4)
14.2.2 Nanofiber Membranes for Microfiltration
425(3)
14.2.3 Nanofibrous Membranes for Membrane Distillation
428(3)
14.3 Nanofiber-Based Composite Membranes
431(13)
14.3.1 Thin-Film Nanofibrous Composite Membranes for Ultrafiltration
432(4)
14.3.2 Thin-Film Nanofibrous Composite Membranes for Hemodialysis
436(3)
14.3.3 Thin-Film Nanofibrous Composite Membranes for Nanofiltration or Forward Osmosis
439(4)
14.3.4 Thin-Film Nanofibrous Composite Membranes for Pervaporation
443(1)
14.4 Conclusions
444(1)
Acknowledgments
445(1)
References
445(10)
Chapter 15 Electrospun Nanofibers for Food and Food Packaging Technology
455(62)
Jing Tian
Hongbing Deng
Mengtian Huang
Rong Liu
Yang Yi
Xiangyang Dong
15.1 Introduction
455(1)
15.2 Electrospinning of Biopolymeric Nanofibers in the Food Industry
456(31)
15.2.1 Electrospinning of Polysaccharides
456(12)
15.2.2 Electrospinning of Proteins
468(16)
15.2.3 Nanofibers From Other Naturally Occurring Compounds
484(3)
15.3 Electrospinning of Synthetic Polymeric Nanofibers in the Food Industry
487(4)
15.4 Functionalization of Nanofibers
491(3)
15.4.1 Electrospinning of Polymer Blends
492(1)
15.4.2 Electrospinning of Core-Shell Structures
493(1)
15.4.3 Inclusion of Nano- and Microstructures and Coating Nanofibers
494(1)
15.5 Application in Food Packaging Technology
494(9)
15.5.1 Food Preservation
495(5)
15.5.2 Preservation From Other Environmental Hazards
500(1)
15.5.3 Preservation of Flavor and Masking of Odor
501(1)
15.5.4 Delivery of Nutraceuticals and Facilitation of Sustained Release
501(1)
15.5.5 Harvest and Analyses of Targeted Analytes
502(1)
15.5.6 Carriers for Intelligent Sensors
503(1)
15.6 Conclusions and Perspectives
503(1)
References
504(13)
Chapter 16 Electrospun Nanofibers for Protein Adsorption
517(26)
Todd J. Menkhaus
Hao Fong
16.1 Introduction
517(4)
16.2 Fabrication and Bioseparation Studies of Adsorptive Membranes and Felts Made From Electrospun Cellulose Acetate Nanofibers
521(10)
16.2.1 Materials and Methods
521(3)
16.2.2 Results and Discussion
524(6)
16.2.3 Conclusions
530(1)
16.3 Surface-Functionalized Electrospun Carbon Nanofiber Mats as an Innovative Type of Protein Adsorption or Purification Medium With High Capacity and High Throughput
531(9)
16.3.1 Materials and Methods
531(2)
16.3.2 Results and Discussion
533(7)
16.3.3 Conclusions
540(1)
Acknowledgments
540(1)
References
541(2)
Chapter 17 Electrospun Nanofibers for Waterproof and Breathable Clothing
543(28)
Junlu Sheng
Jing Zhao
Xi Yu
Lifang Liu
Jianyong Yu
Bin Ding
17.1 Introduction
543(2)
17.2 Electrospun Nanofibers for Waterproof and Breathable Clothing
545(19)
17.2.1 Polyurethane Electrospun Membranes
545(8)
17.2.2 Polyvinylidene Fluoride Electrospun Membranes
553(2)
17.2.3 Polyacrylonitrile Electrospun Membranes
555(6)
17.2.4 Other Polymer Electrospun Membranes
561(3)
17.3 Conclusion and Future Trends
564(1)
Acknowledgments
564(1)
References
564(7)
Chapter 18 Electrospun Nanofibers for Sensors
571(32)
Yan Li
Mohammed Awad Abedalwafa
Liqin Tang
De Li
Lu Wang
18.1 Introduction
571(1)
18.2 How to Design Electrospun NM-Based Sensing Materials
572(7)
18.2.1 Regulating the Constituent Parts of the Polymeric Solution
572(7)
18.3 Electrochemical Sensors
579(3)
18.3.1 Metal, Metal Oxide, and Ceramic Nanofiber-Based Electrochemical Sensing
579(3)
18.3.2 Conductive Polymeric Nanofiber-Based Electrochemical Sensing
582(1)
18.4 Optical Sensors
582(4)
18.4.1 Colorimetric Sensors
582(4)
18.5 Resistive Sensors
586(2)
18.5.1 Inorganic Nanofibers
586(1)
18.5.2 Organic Nanofibers
587(1)
18.5.3 Hybrid Nanofibers
588(1)
18.6 Mass-Change-Sensitive Sensors (Quartz Crystal Microbalance Sensors)
588(5)
18.6.1 Mechanism
588(5)
18.7 Summary and Perspectives
593(1)
Acknowledgments
594(1)
References
594(5)
Further Reading
599(4)
Chapter 19 Electrospun Nanofibers for Optical Applications
603(16)
Jianchen Hu
Ke-Qin Zhang
19.1 Optical Properties of Pristine Electrospun Nanofibers and the Corresponding Optical Applications
603(1)
19.2 Optical Properties of Doped Electrospun Nanofibers and the Corresponding Optical Applications
604(7)
19.2.1 Photochromic Molecule Doped Electrospun Nanofibers for the Application of Photoswitching
605(1)
19.2.2 Doping Electrospun Nanofibers to Form Fluorescent Sensors for Nitroaromatic Explosive Detection
606(3)
19.2.3 Laser Dye Doped Electrospun Nanofibers for Laser Emission
609(1)
19.2.4 Dopant Modifying the End of Polymer Chains to Form Fluorescent Aggregation-Induced-Emission Active Polymers for Detection of Oil Absorption
609(1)
19.2.5 Doping Electrospun Nanofibers With Metal Nanoclusters for Selective Heavy Metal Detection
610(1)
19.3 Optical Applications of Electrospun Nanofibers with Further Treatment
611(5)
19.3.1 Optical Properties of Electrospun TiO2 Nanofibers
612(1)
19.3.2 Electrospun GaN, ZnO Nanofibers, and Application in UV Detectors
612(1)
19.3.3 Electrospun Transparent Electrode for the Application of Solar Cells and Photosensors
613(2)
19.3.4 Further Treatment of Electrospun Nanofibers for Construction of Structural Color
615(1)
19.4 Summary
616(1)
References
616(3)
Chapter 20 Electrospun Nanofibers for Carbon Dioxide Capture
619(22)
Nousheen Iqbal
Aijaz Ahmed Babar
Ghazala Zainab
Bin Ding
Jianyong Yu
Xianfeng Wang
20.1 Introduction
619(1)
20.2 Traditional Materials for CO2 Capture
620(5)
20.2.1 Polymeric Membranes
620(1)
20.2.2 Ionic Liquids
621(1)
20.2.3 Metal-Organic Frameworks
622(1)
20.2.4 Amine Sorbents
623(1)
20.2.5 Carbon
624(1)
20.3 Key Issues of Porous Materials
625(1)
20.4 Electrospun Nanofibers for CO2 Capture
626(9)
20.4.1 Electrospun Polymer Membrane for CO2 Capture
626(1)
20.4.2 Metal-Organic Framework Incorporated Polymer Nanofibers for CO2 Capture
627(3)
20.4.3 Ionic Liquid-Based Nanofibrous Membranes for CO2 Separation
630(1)
20.4.4 Electrospun Carbon Nanofibers for CO2 Capture
630(5)
20.5 Concluding Remarks and Outlook
635(1)
Acknowledgments
636(1)
References
637(4)
Chapter 21 Electrospun Nanofiber Electrodes: A Promising Platform for Supercapacitor Applications
641(30)
Yue-E Miao
Tianxi Liu
21.1 Introduction
641(2)
21.2 Electrospun Electrochemical Double-Layer Capacitive Nanomaterials for Supercapacitors
643(5)
21.2.1 Carbon Nanofibers
643(3)
21.2.2 CNF-Based Composite Fibers
646(2)
21.3 Electrospun Pseudocapacitive Nanomaterials for Supercapacitors
648(5)
21.3.1 Conducting Polymer Nanofibers
648(2)
21.3.2 Metal Oxide Nanofibers
650(3)
21.4 Electrospun Nanofiber-Based Composite Electrodes for Supercapacitors
653(9)
21.4.1 CNF-Based Nanocomposites
653(8)
21.4.2 Pseudocapacitive Nanofiber/Carbon Additive Nanocomposites
661(1)
21.5 Conclusions and Outlook
662(1)
Acknowledgments
662(1)
References
663(8)
Chapter 22 Electrospun Nanofibers for Lithium-Ion Batteries
671(24)
Yunyun Zhai
Haiqing Liu
Lei Li
Jianyong Yu
Bin Ding
22.1 Introduction to Lithium-Ion Batteries
671(1)
22.2 Electrospun Nanofiber Anodes
672(5)
22.2.1 Carbon Nanofiber-Based Anodes
672(2)
22.2.2 Silicon-Based Nanofiber Anodes
674(2)
22.2.3 Metal Oxide Nanofiber Anodes
676(1)
22.3 Electrospun Nanofiber Cathodes
677(3)
22.3.1 Lithium Transition Metal Oxide Nanofiber Cathodes
677(1)
22.3.2 Transition Metal Oxide Nanofiber Cathodes
678(2)
22.4 Electrospun Nanofiber Separators
680(9)
22.4.1 Electrospun Polymer Nanofiber Separators
681(5)
22.4.2 Electrospun Polymer/Inorganic Nanofiber Separators
686(3)
22.5 Conclusions and Outlook
689(1)
Acknowledgments
689(1)
References
689(6)
Chapter 23 Electrospun Nanofibers for Catalysts
695(24)
Ping Lu
Simone Murray
Min Zhu
23.1 Introduction
695(1)
23.2 Methods for Preparing Nanofibrous Catalysts
696(4)
23.2.1 Encapsulation Through Electrospinning Process
696(2)
23.2.2 Postelectrospinning Deposition
698(2)
23.3 Electrospun Nanofibers as Catalysts
700(2)
23.3.1 Polymer Nanofibers as Catalysts
700(1)
23.3.2 Metal Nanofibers as Catalysts
700(1)
23.3.3 Oxide Nanofibers as Catalysts
701(1)
23.4 Catalysts Supported on Electrospun Nanofibers
702(10)
23.4.1 Biocatalysts on Nanofibers
702(4)
23.4.2 Metal Nanoparticles on Nanofibers
706(4)
23.4.3 Oxide Nanoparticles on Nanofibers
710(2)
23.4.4 Other Catalyst Nanoparticles on Nanofibers
712(1)
23.5 Conclusions
712(1)
References
713(6)
Chapter 24 Electrospun Nanofibers for Tissue Engineering
719(16)
Xiumei Mo
Binbin Sun
Tong Wu
Dandan Li
24.1 Introduction
719(2)
24.2 Electrospun Nanofibers for Tendon Tissue Engineering Applications
721(4)
24.2.1 Different Topological Structures of Electrospun Film Scaffolds for Tendon Tissue Engineering
722(1)
24.2.2 Three-Dimensional Electrospinning Scaffolds for Tendon Tissue Engineering
723(1)
24.2.3 Electrospinning Technology Combined With Textile Structure in Tendon Tissue Engineering
724(1)
24.3 Electrospun Nanofibers for Vascular Tissue Engineering Applications
725(3)
24.3.1 Electrospun Single-Layered Vascular Scaffold
726(1)
24.3.2 Electrospun Multilayered Vascular Scaffold
726(1)
24.3.3 Surface Modification on Electrospun Vascular Scaffold
727(1)
24.3.4 Electrospun Vascular Scaffold Loaded With Drugs or Growth Factors
727(1)
24.4 Electrospun Nanofibers for Nerve Tissue Engineering Applications
728(3)
24.4.1 Electrospun Nanofiber Scaffold with Aligned Structure
728(1)
24.4.2 Electrospun Nanofiber Scaffold Loaded With Growth Factors
729(1)
24.4.3 Conductive Electrospun Nanofiber Scaffold and Electrical Stimulation for Nerve Tissue Engineering Applications
730(1)
24.5 Conclusion
731(1)
References
731(4)
Chapter 25 Electrospun Nanofibers for Drug Delivery
735(30)
Mary Stack
Deep Parikh
Haoyu Wang
Lichen Wang
Meng Xu
Jin Zou
Jun Cheng
Hongjun Wang
25.1 Introduction
735(1)
25.2 Approaches to Incorporating Drugs for Release
736(14)
25.2.1 Blending
736(3)
25.2.2 Adsorption
739(4)
25.2.3 Core-Shell
743(3)
25.2.4 Combination With Other Structures
746(4)
25.3 Types of Drugs for Release
750(2)
25.3.1 Small Molecules
751(1)
25.3.2 Antibiotics
752(1)
25.3.3 Proteins
752(1)
25.3.4 Multiple Drugs
752(1)
25.4 Medical Applications of Drug-Eluting Fiber Matrices
752(4)
25.4.1 Neural Tissue Engineering
753(1)
25.4.2 Vascular Tissue Engineering
754(1)
25.4.3 Skin Tissue Engineering
755(1)
25.4.4 Bone Tissue Engineering
755(1)
25.4.5 Cartilage Tissue Engineering
756(1)
25.5 Future Perspectives
756(1)
25.6 Conclusion
757(1)
References
757(8)
Chapter 26 Electrospun Nanofibers for Enzyme Immobilization
765(18)
Dawei Li
Qingqing Wang
Fenglin Huang
Qufu Wei
26.1 Introduction
765(1)
26.2 Enzyme Immobilization Strategies for Electrospun Nanofibers
766(5)
26.2.1 Surface Attachment of Enzymes on Nanofibers
766(4)
26.2.2 Encapsulation Immobilization of Enzymes in Nanofibers
770(1)
26.3 Application Fields of Enzymes Immobilized by Electrospun Nanofibers
771(8)
26.3.1 Enzyme Membrane Bioreactors
771(1)
26.3.2 Enzyme Biosensors
772(2)
26.3.3 Water Treatment
774(5)
26.4 Summary and Perspectives
779(1)
References
779(4)
Index 783
Bin Ding is Vice Dean at the College of Textiles, Donghua University, Shanghai, China., He is a member of several professional societies, including the MRS, the ACS, the Fiber Society, Member of Chinese Chemical Society, Advanced Member of Chinese Society of Mciro- and Nanometer. His research interests include the fabrication and application and Industrialization of nanomaterials as environmental protection materials Xianfeng Wang, is Professor at the College of Textiles, Donghua University, Shanghai, China, whose research focuses in the areas of materials engineering and nanotechnology. Jianyong Yu is based at the Chinese Engineering Academy, China. He is professor of Textile Science & Engineering, whose research focuses on the basic theory, key technology and application of textile materials.