Atnaujinkite slapukų nuostatas

El. knyga: Electrospinning for Tissue Regeneration

Edited by , Edited by (University of Manchester, UK)

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Electrospinning is most commonly associated with textile manufacturing. However recent research and development has proved that the technology can be used to create organ components and repair damaged tissues. This novel approach to tissue repair and regeneration is being widely employed within the biomaterials sector, as it produces nanofibres which create the correct physical environment to promote cell migration and new tissue formation. The first part of the book provides an introduction to the field with information on chemistry, process control and regulator issues. A second group of chapters discuss electrospinning for organ regeneration such as skin and bone tissue regeneration. A final group of chapters analyze electrospinning for other tissue regeneration such as stem cell and wound healing applications.


Electrospinning is most commonly associated with textile manufacturing. However recent research and development has proved that the technology can be used to create organ components and repair damaged tissues. This novel approach to tissue repair and regeneration is being widely employed within the biomaterials sector, as it produces nanofibres which create the correct physical environment to promote cell migration and new tissue formation. The first part of the book provides an introduction to the field with information on chemistry, process control and regulator issues. A second group of chapters discuss electrospinning for organ regeneration such as skin and bone tissue regeneration. A final group of chapters analyze electrospinning for other tissue regeneration such as stem cell and wound healing applications.
Contributor contact details xi
PART I Fundamentals of electrospinning
1(90)
1 Introduction to electrospinning
3(31)
L. Wang
A. J. Ryan
1.1 Introduction
3(1)
1.2 Basic concepts
4(1)
1.3 Morphology and structural formation
5(2)
1.4 Parameters
7(3)
1.5 Apparatus
10(1)
1.6 Materials
11(4)
1.7 Applications
15(6)
1.8 Future trends
21(1)
1.9 References
21(13)
2 Polymer chemistry
34(17)
P. Christian
2.1 Introduction
34(2)
2.2 Natural polymers
36(5)
2.3 Synthetic degradable polymers
41(7)
2.4 Conclusions
48(1)
2.5 References
49(2)
3 The electrospinning process, conditions and control
51(16)
B. Robb
B. Lennox
3.1 Introduction
51(1)
3.2 Solution parameters
52(4)
3.3 Processing parameters
56(5)
3.4 Ambient parameters
61(3)
3.5 Conclusions
64(1)
3.6 References
65(2)
4 Regulatory issues relating to electrospinning
67(24)
A. Wilson
4.1 Introduction
67(2)
4.2 Regulation of materials in regenerative medicine
69(15)
4.3 Future trends
84(3)
4.4 Sources of further information and advice
87(2)
4.5 References
89(2)
PART II Electrospinning for tissue regeneration
91(250)
5 Bone tissue regeneration
93(18)
A. Bassi
J. Gough
M. Zakikhani
S. Downes
5.1 Introduction
93(1)
5.2 Principles of bone biology
94(3)
5.3 Strategies for bone regeneration
97(1)
5.4 Fabrication of scaffolds for bone tissue engineering
97(2)
5.5 Potential materials for scaffolds
99(2)
5.6 Osteoporosis: a growing problem
101(1)
5.7 Strategies for the treatment of bone defects
102(3)
5.8 Conclusions and future trends
105(1)
5.9 References
106(5)
6 Cartilage tissue regeneration
111(16)
T. Hardingham
6.1 Introduction
111(2)
6.2 Culture of chondrogenic cells for implantation
113(6)
6.3 Electrospun nanofibre scaffolds
119(5)
6.4 Future trends
124(1)
6.5 References
124(3)
7 Muscle tissue regeneration
127(21)
K. D. McKeon-Fischer
J. W. Freeman
7.1 Introduction to skeletal muscle
127(1)
7.2 Skeletal muscle injuries
128(1)
7.3 Mechanical properties of skeletal muscle
129(1)
7.4 Tissue engineering
130(1)
7.5 Contractile force
131(2)
7.6 Conductive elements
133(7)
7.7 Conclusion and future trends
140(3)
7.8 References
143(5)
8 Tendon tissue regeneration
148(20)
L. A. Bosworth
8.1 Introduction: tendon tissue
148(1)
8.2 Tendon structure and composition
148(3)
8.3 Tendon pathology
151(1)
8.4 Clinical need
152(1)
8.5 Tissue engineering
153(2)
8.6 Cell response to electrospun bundles
155(3)
8.7 Mechanical properties of electrospun bundles
158(2)
8.8 Conclusions and future trends
160(4)
8.9 Acknowledgements
164(1)
8.10 References
164(4)
9 Nerve tissue regeneration
168(34)
C. Wang
H. Koh
S. Ramakrishna
S. Liao
9.1 Introduction
168(1)
9.2 Clinical problems in nerve tissue therapy
169(2)
9.3 Nerve tissue engineering
171(10)
9.4 Biomimetic nanoscaffolds for peripheral nerve regeneration
181(6)
9.5 Stem cell therapy with nanofibre for nerve regeneration
187(5)
9.6 Conclusion and perspectives
192(1)
9.7 References
193(9)
10 Heart valve tissue regeneration
202(23)
M. Simonet
A. Driessen-Mol
F.P.T. Baaijens
C.V.C. Bouten
10.1 Introduction
202(1)
10.2 Tissue to be replaced: heart valves
203(2)
10.3 Specific tissue requirements as a blueprint for scaffold properties
205(6)
10.4 Selection of scaffold material
211(1)
10.5 Scaffold properties to meet tissue requirements
212(5)
10.6 Future trends
217(1)
10.7 Acknowledgment
218(1)
10.8 References
218(7)
11 Bladder tissue regeneration
225(17)
S. C. Baker
J. Southgate
11.1 Structural/functional properties of the bladder
225(2)
11.2 Bladder disease and the need for bladder substitution
227(1)
11.3 Electrospun and other scaffolds for bladder tissue engineering
228(6)
11.4 Electrospinning fit for purpose
234(3)
11.5 Future trends
237(1)
11.6 Conclusions
237(1)
11.7 Acknowledgement
238(1)
11.8 References
238(4)
12 Tracheal tissue regeneration
242(38)
F. Acocella
S. Brizzola
12.1 Anatomy of the trachea and main pathologies of surgical concern
242(3)
12.2 Tissue engineered trachea (TET)
245(7)
12.3 Electrospun biodegradable tubular tracheal scaffold
252(6)
12.4 Scaffold fulfilment
258(5)
12.5 In vitro and in vivo evaluation of the cell and tissue response
263(12)
12.6 Conclusions
275(1)
12.7 Acknowledgements
276(1)
12.8 References
276(4)
13 Dental regeneration
280(18)
I. U. Rehman
A. S. Khan
13.1 Introduction
280(1)
13.2 Periodontal regeneration
281(3)
13.3 Reinforcement of dental restorations
284(8)
13.4 Conclusions and future trends
292(1)
13.5 References
293(5)
14 Skin tissue regeneration
298(19)
A. Subramanian
U. M. Krishnan
S. Sethuraman
14.1 Introduction
298(1)
14.2 Biology of skin and wound healing
299(2)
14.3 Challenging problems in existing therapies
301(1)
14.4 Restoring functional skin tissue
302(1)
14.5 Nanofibers as extracellular matrix analogue
303(1)
14.6 Ideal properties of scaffold
304(4)
14.7 Choice of biomaterial
308(2)
14.8 Cellular interactions on skin substitute
310(1)
14.9 Conclusions and future trends
311(1)
14.10 References
312(5)
15 Wound dressings
317(24)
T. R. Hayes
B. Su
15.1 Introduction: wound healing
317(6)
15.2 Nanofibres
323(5)
15.3 Antimicrobial nanofibrous wound dressings
328(6)
15.4 Conclusions
334(1)
15.5 References
335(6)
PART III Electrospinning for in vitro applications
341(56)
16 Cell culture systems for kidney research
343(16)
L. A. Bosworth
S. Schuler
R. Lennon
16.1 Introduction
343(2)
16.2 Current work
345(3)
16.3 Electrospun materials
348(2)
16.4 Scanning electron microscopy of cells on electrospun scaffolds
350(1)
16.5 Immunostaining of extracellular matrix proteins on electrospun scaffolds
351(1)
16.6 Immunostaining of cells on electrospun scaffolds
352(1)
16.7 Comparison of culture methods
353(2)
16.8 Discussion and future trends
355(2)
16.9 Acknowledgements
357(1)
16.10 References
357(2)
17 Cell culture systems for pancreatic research
359(13)
J. D. D. Wan
S. Downes
M. Dunne
K. Cosgrove
17.1 Introduction
359(2)
17.2 Min6 cell line
361(1)
17.3 Nes2y cells
362(1)
17.4 Novel scaffolds and production methods
362(1)
17.5 Methods
363(1)
17.6 Results
364(4)
17.7 Discussion
368(1)
17.8 Future trends
369(1)
17.9 Conclusion
370(1)
17.10 References
370(2)
18 Cell culture systems for stem cell research
372(25)
K. Meade
R. J. Holley
C. L. R. Merry
18.1 Introduction
372(1)
18.2 Embryonic stem cells
373(2)
18.3 Current culture techniques
375(9)
18.4 3D scaffolds
384(1)
18.5 Combining ES cells with electrospun scaffolds
385(5)
18.6 Future trends
390(1)
18.7 References
390(7)
Index 397
Dr. Lucy A. Bosworth and Professor Sandra Downes both work in the Materials Science Centre at The University of Manchester, UK and are widely renowned for their research into biomaterials, tissue engineering and electrospinning.