Preface |
|
v | |
Notes to the reader |
|
ix | |
|
1 Cyclotomic Iwasawa theory |
|
|
1 | (48) |
|
|
3 | (3) |
|
1.1.1 Cyclotomic integers |
|
|
3 | (1) |
|
1.1.2 Cyclotomic character |
|
|
4 | (1) |
|
1.1.3 Decomposition group |
|
|
5 | (1) |
|
1.2 An outline of class field theory |
|
|
6 | (2) |
|
|
6 | (1) |
|
1.2.2 Main theorem of class field theory |
|
|
7 | (1) |
|
1.3 Class number formula and Stickelberger's theorem |
|
|
8 | (2) |
|
1.3.1 Class number formula |
|
|
8 | (1) |
|
1.3.2 Galois module structure of Cl-n |
|
|
9 | (1) |
|
|
10 | (4) |
|
1.4.1 Gauss sum over a finite field |
|
|
10 | (2) |
|
|
12 | (1) |
|
1.4.3 Basic properties of Gauss sum |
|
|
13 | (1) |
|
1.5 Prime factorization of Gauss sum |
|
|
14 | (6) |
|
|
14 | (1) |
|
1.5.2 Reformulation of the Stickelberger theorem |
|
|
15 | (1) |
|
1.5.3 Lemmas and key steps |
|
|
15 | (4) |
|
1.5.4 Proof of Stickelberger's theorem |
|
|
19 | (1) |
|
1.6 A consequence of the Kummer--Vandiver conjecture |
|
|
20 | (2) |
|
|
20 | (1) |
|
|
21 | (1) |
|
|
22 | (2) |
|
|
22 | (1) |
|
1.7.2 Kummer theory for p-units |
|
|
23 | (1) |
|
1.8 Proof of cyclicity theorem |
|
|
24 | (3) |
|
|
24 | (2) |
|
|
26 | (1) |
|
1.9 Iwasawa theoretic interpretation |
|
|
27 | (3) |
|
1.9.1 Limit of Stickelberger's elements |
|
|
28 | (1) |
|
1.9.2 Cyclicity over Iwasawa algebra |
|
|
28 | (1) |
|
|
29 | (1) |
|
1.10 Iwasawa's formula for |A-n| |
|
|
30 | (5) |
|
|
30 | (1) |
|
1.10.2 Weierstrass preparation theorem |
|
|
31 | (2) |
|
1.10.3 Proof of Iwasawa's formula |
|
|
33 | (1) |
|
1.10.4 Iwasawa's heuristic |
|
|
34 | (1) |
|
1.11 Class number formula for F+n |
|
|
35 | (6) |
|
|
35 | (1) |
|
1.11.2 Class number as residue of Dedekind zeta function |
|
|
36 | (2) |
|
1.11.3 Specialization to F+n |
|
|
38 | (1) |
|
1.11.4 Class number as a unit index |
|
|
39 | (1) |
|
|
40 | (1) |
|
1.12 Local Iwasawa theory |
|
|
41 | (8) |
|
1.12.1 A theorem of Iwasawa |
|
|
41 | (5) |
|
1.12.2 A version for a Z2p-extension |
|
|
46 | (3) |
|
2 Cuspidal Iwasawa theory |
|
|
49 | (66) |
|
|
51 | (15) |
|
|
51 | (3) |
|
2.1.2 Tangent space and local rings |
|
|
54 | (4) |
|
|
58 | (2) |
|
2.1.4 Projective plane curve |
|
|
60 | (2) |
|
|
62 | (2) |
|
2.1.6 Theorem of Riemann--Roch |
|
|
64 | (1) |
|
2.1.7 Regular maps from a curve into projective space |
|
|
65 | (1) |
|
|
66 | (8) |
|
|
66 | (1) |
|
2.2.2 Weierstrass equations of elliptic curves |
|
|
67 | (4) |
|
2.2.3 Moduli of Weierstrass type |
|
|
71 | (3) |
|
2.3 Modular forms and functions |
|
|
74 | (16) |
|
2.3.1 Geometric modular forms |
|
|
74 | (1) |
|
2.3.2 Topological fundamental groups |
|
|
75 | (2) |
|
2.3.3 Fundamental group of an elliptic curve |
|
|
77 | (1) |
|
2.3.4 Classical Weierstrass Q-function |
|
|
78 | (2) |
|
2.3.5 Complex modular forms |
|
|
80 | (1) |
|
2.3.6 Weierstrass σ and σ functions |
|
|
81 | (3) |
|
2.3.7 Product q-expansion |
|
|
84 | (2) |
|
|
86 | (3) |
|
|
89 | (1) |
|
2.4 Modular Stickelberger theory |
|
|
90 | (25) |
|
|
91 | (2) |
|
2.4.2 Distribution on p-divisible groups |
|
|
93 | (1) |
|
2.4.3 Stickelberger distribution |
|
|
94 | (1) |
|
2.4.4 Rank of distribution |
|
|
95 | (2) |
|
|
97 | (1) |
|
2.4.6 Finiteness of C1X(N) |
|
|
98 | (1) |
|
2.4.7 Siegel units generate A×pm |
|
|
99 | (4) |
|
2.4.8 Fricke--Wohlfahrt theorem |
|
|
103 | (2) |
|
2.4.9 Siegel units and Stickelberger's ideal |
|
|
105 | (4) |
|
2.4.10 Cuspidal class number formula |
|
|
109 | (3) |
|
2.4.11 Cuspidal class number formula for X1(N) |
|
|
112 | (3) |
|
3 Cohomological modular forms and p-adic L-functions |
|
|
115 | (36) |
|
3.1 The multiplicative group Gm and Dirichlet L-function |
|
|
115 | (16) |
|
3.1.1 Betti cohomology groups |
|
|
116 | (3) |
|
3.1.2 Cohomology of Gm(C) and Dirichlet L-values |
|
|
119 | (3) |
|
3.1.3 Relative cohomology |
|
|
122 | (2) |
|
3.1.4 GL(1) Hecke operators |
|
|
124 | (2) |
|
|
126 | (3) |
|
3.1.6 P-adic L-function of Kubota-Leopoldt |
|
|
129 | (2) |
|
3.2 Modular p-adic L-functions |
|
|
131 | (20) |
|
3.2.1 Elliptic modular forms |
|
|
132 | (1) |
|
3.2.2 Modular cohomology group |
|
|
133 | (2) |
|
3.2.3 GL(2) Hecke operators |
|
|
135 | (3) |
|
|
138 | (2) |
|
3.2.5 Duality between Hecke algebra and cusp forms |
|
|
140 | (3) |
|
3.2.6 Modular Hecke L-functions |
|
|
143 | (1) |
|
3.2.7 Rationality of Hecke L-values |
|
|
144 | (2) |
|
3.2.8 P-old and p-new forms |
|
|
146 | (2) |
|
3.2.9 Elliptic modular p-adic measure |
|
|
148 | (3) |
|
4 P-adic families of modular forms |
|
|
151 | (68) |
|
4.1 P-adic family and slope |
|
|
151 | (22) |
|
4.1.1 P-adic L-functions as a power series |
|
|
152 | (2) |
|
|
154 | (3) |
|
|
157 | (2) |
|
|
159 | (2) |
|
4.1.5 Modular forms of level N |
|
|
161 | (6) |
|
4.1.6 Slope of modular forms |
|
|
167 | (5) |
|
4.1.7 Control of Hecke algebra |
|
|
172 | (1) |
|
4.2 Analytic families via cohomology groups |
|
|
173 | (46) |
|
4.2.1 Fundamental group, again |
|
|
176 | (1) |
|
|
177 | (2) |
|
4.2.3 Inflation and restriction |
|
|
179 | (2) |
|
4.2.4 Eichler--Shimura isomorphism |
|
|
181 | (1) |
|
|
182 | (2) |
|
4.2.6 Duality of cohomology groups |
|
|
184 | (2) |
|
4.2.7 Hecke operator on cohomology groups |
|
|
186 | (3) |
|
4.2.8 P-Hecke operator and level lowering |
|
|
189 | (3) |
|
4.2.9 Weight independence of limit Hecke algebra |
|
|
192 | (1) |
|
4.2.10 Hecke operator on boundary |
|
|
193 | (6) |
|
|
199 | (3) |
|
4.2.12 Freeness and divisibility |
|
|
202 | (2) |
|
4.2.13 Proof of Theorem 4.2.17 for the ordinary part |
|
|
204 | (3) |
|
4.2.14 Proof of Theorem 4.2.17 in general |
|
|
207 | (3) |
|
|
210 | (1) |
|
4.2.16 Control of cohomology |
|
|
211 | (2) |
|
4.2.17 Co-freeness over the group algebra |
|
|
213 | (3) |
|
4.2.18 Ordinary p-adic analytic families |
|
|
216 | (3) |
|
|
219 | (20) |
|
|
220 | (2) |
|
5.1.1 Deformation of a character |
|
|
221 | (1) |
|
5.1.2 Group algebra is universal |
|
|
221 | (1) |
|
5.1.3 Examples of group algebras |
|
|
222 | (1) |
|
5.2 A way of recovering the group and its application |
|
|
222 | (11) |
|
|
223 | (2) |
|
|
225 | (3) |
|
5.2.3 Algebra R[ M] = R M and derivation |
|
|
228 | (1) |
|
5.2.4 Congruence modules C0 and C1 |
|
|
229 | (2) |
|
5.2.5 Congruence modules for group algebras |
|
|
231 | (2) |
|
5.3 Cohomology of induced representations |
|
|
233 | (3) |
|
5.3.1 Continuous group cohomology |
|
|
233 | (1) |
|
5.3.2 Induced representation |
|
|
234 | (1) |
|
5.3.3 Adjunction formula for Hom and ⊗ |
|
|
235 | (1) |
|
|
235 | (1) |
|
5.4 Class group as an arithmetic cohomology group |
|
|
236 | (3) |
|
5.4.1 Abelian Selmer groups |
|
|
236 | (3) |
|
6 Universal ring and compatible system |
|
|
239 | (42) |
|
6.1 Adjoint Selmer groups and differentials |
|
|
241 | (13) |
|
6.1.1 Ordinary deformation functor |
|
|
241 | (2) |
|
6.1.2 Tangent space of deformation functors |
|
|
243 | (1) |
|
6.1.3 Tangent space of local rings and generators |
|
|
243 | (2) |
|
6.1.4 Tangent space as adjoint cohomology group |
|
|
245 | (2) |
|
6.1.5 Mod p adjoint Selmer group |
|
|
247 | (2) |
|
6.1.6 P-finiteness condition |
|
|
249 | (1) |
|
6.1.7 Reinterpretation of the functor D |
|
|
250 | (1) |
|
6.1.8 General adjoint Selmer group |
|
|
251 | (1) |
|
6.1.9 Differentials and Selmer group |
|
|
252 | (2) |
|
6.1.10 Local condition at p |
|
|
254 | (1) |
|
6.2 Deformation rings of a compatible system |
|
|
254 | (27) |
|
|
258 | (1) |
|
6.2.2 Consequence of vanishing of differentials |
|
|
259 | (1) |
|
6.2.3 Modular p-adic Galois representation |
|
|
260 | (2) |
|
6.2.4 Modular deformation |
|
|
262 | (3) |
|
6.2.5 "Big" ordinary Hecke algebra Tp |
|
|
265 | (4) |
|
|
269 | (2) |
|
6.2.7 Algebraic p-adic L-function |
|
|
271 | (4) |
|
6.2.8 A detailed and stronger version of Tate's theorem |
|
|
275 | (4) |
|
6.2.9 Proof of Tate's Theorem 6.2.21 |
|
|
279 | (2) |
|
7 Cyclicity of adjoint Selmer groups |
|
|
281 | (60) |
|
|
283 | (5) |
|
7.1.1 Greenberg's Selmer group |
|
|
283 | (1) |
|
|
284 | (4) |
|
7.2 Upper bound of the number of Selmer generators |
|
|
288 | (10) |
|
|
288 | (1) |
|
7.2.2 Another example of local Tate duality |
|
|
289 | (1) |
|
7.2.3 An adjoint reflection theorem |
|
|
290 | (2) |
|
7.2.4 Proof of Theorem 7.2.3 |
|
|
292 | (2) |
|
7.2.5 Details of H1(K, μp) = K× ⊗z Fp |
|
|
294 | (1) |
|
7.2.6 Restriction to the splitting field of Ad(p) |
|
|
294 | (1) |
|
7.2.7 Selmer group as a subgroup of F× ⊗z F |
|
|
295 | (2) |
|
7.2.8 Dirichlet's unit theorem |
|
|
297 | (1) |
|
7.3 Induced modular Galois representation |
|
|
298 | (10) |
|
7.3.1 Induced representation and self-twist |
|
|
299 | (2) |
|
7.3.2 Galois action on unit groups |
|
|
301 | (3) |
|
7.3.3 Ordinarity for induced representation |
|
|
304 | (1) |
|
7.3.4 Induction in three ways |
|
|
305 | (3) |
|
7.4 Cyclicity when p splits in K |
|
|
308 | (5) |
|
7.4.1 Identity of two deformation functors |
|
|
308 | (2) |
|
7.4.2 Decomposition of Sel(Ad(IndQK φ)) |
|
|
310 | (1) |
|
7.4.3 An exotic identity of Galois groups |
|
|
311 | (1) |
|
7.4.4 Cyclicity of anticyclotomic Iwasawa modules |
|
|
312 | (1) |
|
7.5 Iwasawa theory over quadratic fields |
|
|
313 | (5) |
|
7.5.1 Galois action on global units |
|
|
314 | (1) |
|
7.5.2 Selmer group and ray class group |
|
|
315 | (1) |
|
7.5.3 Structure of Mp[ Ad] as a G-module in Case D |
|
|
315 | (1) |
|
7.5.4 Theorem for Sel(IndQK φ-) |
|
|
316 | (2) |
|
7.6 Selmer groups in the non-split case |
|
|
318 | (11) |
|
7.6.1 Set-up in Cases Ds and U_ |
|
|
318 | (1) |
|
7.6.2 Local Galois action in non-split case |
|
|
319 | (2) |
|
7.6.3 Generality of Selmer cocycle in non-split case |
|
|
321 | (3) |
|
7.6.4 Adjoint Selmer groups in non-split case |
|
|
324 | (3) |
|
7.6.5 Comparison of Theorems 7.6.2 and 7.4.4 |
|
|
327 | (2) |
|
7.7 Selmer group of exceptional Artin representation |
|
|
329 | (12) |
|
7.7.1 Classification of subgroups of PGL2(F) |
|
|
329 | (2) |
|
|
331 | (1) |
|
7.7.3 Selmer group revisited |
|
|
332 | (1) |
|
7.7.4 Decomposition group as Galois module |
|
|
333 | (1) |
|
7.7.5 Structure of Selmer groups |
|
|
334 | (1) |
|
7.7.6 Proof of Theorem 7.7.3 |
|
|
335 | (3) |
|
7.7.7 Proof of Corollary 7.7.4 |
|
|
338 | (1) |
|
7.7.8 Concluding remarks and questions on cyclicity |
|
|
339 | (2) |
|
8 Local indecomposability of modular Galois representation |
|
|
341 | (40) |
|
8.1 One generator theorem of T over Λ |
|
|
342 | (4) |
|
8.1.1 Proof of one generator theorem |
|
|
343 | (2) |
|
8.1.2 Cyclicity of the adjoint Selmer group again |
|
|
345 | (1) |
|
|
346 | (1) |
|
8.2 Local structure at p of modular deformation |
|
|
346 | (4) |
|
8.2.1 Local indecomposability conjecture |
|
|
347 | (1) |
|
|
347 | (2) |
|
8.2.3 Generic non-triviality of U |
|
|
349 | (1) |
|
8.3 Universal ring for IndQK φ for K real at split p |
|
|
350 | (11) |
|
8.3.1 Rord is a non-trivial extension of A if K is real |
|
|
351 | (1) |
|
8.3.2 Questions on structure of the universal ring |
|
|
351 | (1) |
|
8.3.3 Action of [ a] on Sel(Ad(p)) |
|
|
352 | (2) |
|
8.3.4 Set-up for a structure theorem |
|
|
354 | (1) |
|
|
355 | (3) |
|
8.3.6 Wall-Sun-Sun primes |
|
|
358 | (1) |
|
8.3.7 Proof of Theorem 8.3.7 |
|
|
358 | (3) |
|
8.4 Indecomposability of deformations of IndQK φ for K real |
|
|
361 | (7) |
|
8.4.1 Generalized matrix algebras |
|
|
361 | (1) |
|
8.4.2 Inertia embedding into T- |
|
|
362 | (4) |
|
8.4.3 Local indecomposability in the real case |
|
|
366 | (2) |
|
8.5 Local indecomposability for imaginary K |
|
|
368 | (13) |
|
8.5.1 CM and non-CM components |
|
|
369 | (2) |
|
8.5.2 Local indecomposability in the CM case |
|
|
371 | (2) |
|
8.5.3 Katz--Yager p-adic L-function |
|
|
373 | (2) |
|
8.5.4 Local indecomposability again |
|
|
375 | (1) |
|
8.5.5 Semi-simplicity and a structure theorem |
|
|
376 | (4) |
|
|
380 | (1) |
|
9 Analytic and topological methods |
|
|
381 | (32) |
|
9.1 Analyticity of adjoint L-functions |
|
|
383 | (8) |
|
9.1.1 L-function of modular Galois representations |
|
|
383 | (1) |
|
9.1.2 Explicit form of adjoint Euler factors |
|
|
384 | (2) |
|
9.1.3 Analytic continuation |
|
|
386 | (5) |
|
9.2 Integrality of adjoint L-values |
|
|
391 | (9) |
|
9.2.1 Eichler--Shimura isomorphism again |
|
|
391 | (3) |
|
9.2.2 Modified duality pairing |
|
|
394 | (1) |
|
9.2.3 Hecke Hermitian duality |
|
|
395 | (2) |
|
9.2.4 Integrality theorem |
|
|
397 | (3) |
|
9.3 Congruence and adjoint L-values |
|
|
400 | (13) |
|
9.3.1 T-freeness and the congruence number formula |
|
|
400 | (2) |
|
9.3.2 Taylor--Wiles system |
|
|
402 | (2) |
|
9.3.3 Level Q Hecke algebra |
|
|
404 | (1) |
|
9.3.4 Q-ramified deformation |
|
|
405 | (3) |
|
9.3.5 Taylor-Wiles primes |
|
|
408 | (2) |
|
9.3.6 Proof of T-freeness of cohomology groups |
|
|
410 | (3) |
Bibliography |
|
413 | (8) |
List of symbols and statements |
|
421 | (4) |
Index |
|
425 | |