Atnaujinkite slapukų nuostatas

Elementary Topics in Differential Geometry 4th Revised edition [Kietas viršelis]

  • Formatas: Hardback, 266 pages, aukštis x plotis: 216x138 mm, weight: 555 g, 126 illustrations
  • Serija: Undergraduate Texts in Mathematics
  • Išleidimo metai: 31-Oct-1994
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540903577
  • ISBN-13: 9783540903574
Kitos knygos pagal šią temą:
Elementary Topics in Differential Geometry 4th Revised edition
  • Formatas: Hardback, 266 pages, aukštis x plotis: 216x138 mm, weight: 555 g, 126 illustrations
  • Serija: Undergraduate Texts in Mathematics
  • Išleidimo metai: 31-Oct-1994
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540903577
  • ISBN-13: 9783540903574
Kitos knygos pagal šią temą:
This introductory text develops the geometry of n-dimensional oriented surfaces in Rn+1. By viewing such surfaces as level sets of smooth functions, the author is able to introduce global ideas early without the need for preliminary chapters developing sophisticated machinery. The calculus of vector fields is used as the primary tool in developing the theory. Co-ordinate patches are introduced only after preliminary discussions of geodesics, parallel transport, curvature, and convexity. Differential forms are introduced only as needed for use in integration. The text, which draws significantly on students' prior knowledge of linear algebra, multivariate calculus, and differential equations, is designed for a one-semester course at the junior/senior level.
Contents: Graphs and Level Sets.- Vector Fields.- The Tangent Space.-
Surfaces.- Vector Fields on Surfaces; Orientation.- The Gauss Map.-
Geodesics.- Parallel Transport.- The Weingarten Map.- Curvature of Plane
Curves.- Arc Length and Line Integrals.- Curvature of Surfaces.- Convex
Surfaces.- Parametrized Surfaces.- Local Equivalence of Surfaces and
Parametrized Surfaces.- Focal Points.- Surface Area and Volume.- Minimal
Surfaces.- The Exponential Map.- Surfaces with Boundary.- The Gauss-Bonnet
Theorem.- Rigid Motions and Congruence.- Isometries.- Riemannian Metrics.