Atnaujinkite slapukų nuostatas

Elements Of Human Voice [Kietas viršelis]

(Columbia Univ, Usa)
  • Formatas: Hardback, 244 pages
  • Išleidimo metai: 28-Oct-2016
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 981473389X
  • ISBN-13: 9789814733892
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 244 pages
  • Išleidimo metai: 28-Oct-2016
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 981473389X
  • ISBN-13: 9789814733892
Kitos knygos pagal šią temą:
This is a self-contained monograph on human voice. It systematically expounds a theory of voice production initiated by Leonhard Euler, through an analysis of large amount of human voice data, especially simultaneously acquired voice signals and electroglottograph signals, as well as temporal variations of pressures directly below and above the vocal folds. Its contents include the physics and physiology of human voice production, parametrical representations of voice signals, and technology applications. Background knowledge on general acoustics and mathematical tools pertinent to quantitative descriptions of human voice are explained in detail.Readers of this monograph include researchers, practitioners and students in the fields of physiology and medicine, acoustics, computer science, telecommunication, acoustic phonetics, and vocal music.
Preface vii
List of Figures
xxiii
List of Tables
xxvii
Part I Physics and Physiology
1(94)
Chapter 1 Acoustic Waves
7(22)
1.1 Wave Equation in a Tube
7(4)
1.1.1 Particle displacement and perturbation density
7(1)
1.1.2 Particle velocity and equation of continuity
8(1)
1.1.3 Perturbation pressure
8(2)
1.1.4 Wave equation
10(1)
1.2 d'Alembert Solution
11(2)
1.3 Euler's Transient Resonator
13(2)
1.4 Energy and Power
15(2)
1.4.1 Power of acoustic wave
15(1)
1.4.2 Acoustic energy density
16(1)
1.5 Zero-Particle-Velocity Wavefronts in a Tube
17(4)
1.5.1 Heuristic discussions
17(2)
1.5.2 Laplace-transform solution
19(1)
1.5.3 Energy conversion
20(1)
1.6 Fourier Analysis
21(4)
1.6.1 Amplitude and phase
22(1)
1.6.2 Complex-variable version
23(1)
1.6.3 Fourier transform
23(2)
1.7 Numerical Values
25(4)
1.7.1 Pitch scale
25(1)
1.7.2 Intensity scale
26(3)
Chapter 2 Voice Organs
29(32)
2.1 Overall Structure
29(1)
2.2 Vocal Folds
30(21)
2.2.1 Anatomy
31(1)
2.2.2 Strobovideolaryngoscopy
32(1)
2.2.3 Laryngeal electromyography
33(1)
2.2.4 Electroglottograpy
34(4)
2.2.5 Bernoulli force
38(6)
2.2.6 Water-hammer analogy
44(2)
2.2.7 Incomplete closures
46(3)
2.2.8 Isolated closures and glottal stops
49(1)
2.2.9 Videokymography
49(2)
2.2.10 Closed quotient and voice intensity
51(1)
2.3 Vocal Tract
51(10)
2.3.1 Plosives
52(3)
2.3.2 Fricatives
55(2)
2.3.3 Vowels
57(4)
Chapter 3 Experimental Facts
61(18)
3.1 Microphones and Voice Signals
61(8)
3.1.1 Types and working principles of microphones
61(3)
3.1.2 Source of voice signals
64(1)
3.1.3 Vowels
65(3)
3.1.4 Superposition principle
68(1)
3.2 Electroglottograph and Voice Data
69(4)
3.2.1 Temporal correlation
70(2)
3.2.2 Glottal stops
72(1)
3.3 In-Vivo Pressure Measurements
73(6)
Chapter 4 The Physics of Voice Production
79(16)
4.1 A Brief Summary of Experimental Facts
79(1)
4.2 The Concept of Timbrons
80(4)
4.3 Acoustic Waves in the Trachea
84(1)
4.4 An Analytic Solution of the Wave Equation
85(4)
4.4.1 Initial conditions and boundary conditions
86(1)
4.4.2 Acoustic waves in the vocal tract
87(1)
4.4.3 Analysis of the solution
88(1)
4.4.4 Numerical solutions for various vowels
89(1)
4.5 Explanations of Experimental Facts
89(4)
4.5.1 Superposition behavior of vowel signals
90(1)
4.5.2 Efficiency of voice production
90(1)
4.5.3 Role of the closed quotient
91(1)
4.5.4 Supraglottal pressure and subglottal pressure
92(1)
4.5.5 Radiation and decay of formants
93(1)
4.6 The Harp Analogy
93(2)
Part II Mathematical Representations
95(104)
Chapter 5 Timbron Extraction
99(26)
5.1 Some Mathematical Theorems
99(3)
5.1.1 Dispersion relations
99(1)
5.1.2 Uncertainty principle
100(2)
5.1.3 Independence from frame endpoints
102(1)
5.2 The Ends-Matching Procedure
102(2)
5.3 Segmentation Based on EGG Signals
104(3)
5.3.1 Generating segmentation points from EGG signals
105(1)
5.3.2 Estimating the average pitch period
105(1)
5.3.3 Voiced signals with incomplete closures
106(1)
5.4 Segmentation Based on Voice Signals
107(7)
5.4.1 The profile function
107(2)
5.4.2 Width and polarity of the asymmetric window
109(1)
5.4.3 Comparison with segmentation based on EGG
110(2)
5.4.4 Intensity distribution within a pitch period
112(2)
5.5 Stops
114(2)
5.6 Extension to Unvoiced Sections
116(1)
5.7 Amplitude Spectrum of a Timbron
117(8)
5.7.1 Spectral analysis of timbrons
118(2)
5.7.2 Examples
120(5)
Chapter 6 Timbre Vectors
125(14)
6.1 Distortion Measures
125(3)
6.1.1 Mel-frequency cepstral coefficients
126(1)
6.1.2 Distortion measures for LPC coefficients
127(1)
6.2 Timbre Vectors
128(4)
6.2.1 Laguerre functions
128(3)
6.2.2 Definition of timbre vector
131(1)
6.2.3 Feature vector of a frame
131(1)
6.3 Timbre Vector and Amplitude Spectrum
132(4)
6.4 Timbre Distance
136(3)
Chapter 7 Waveform Recovery
139(20)
7.1 Phase Recovery
139(10)
7.1.1 An analytic model
139(3)
7.1.2 Dispersion relation: an analytic example
142(2)
7.1.3 Phase spectrum from speech signals
144(2)
7.1.4 Dispersion relation: voice data
146(1)
7.1.5 d'Alembert wave of glottal airflow
147(2)
7.2 Timbron Recovery
149(1)
7.3 Unvoiced Consonents
150(1)
7.4 Recovery of Entire Voice Signal
151(8)
7.4.1 Breathiness Index
152(1)
7.4.2 Fractional voicedness Index
153(4)
7.4.3 Jitter and shimmer
157(2)
Chapter 8 Applications
159(40)
8.1 Voice Transformation
159(7)
8.1.1 Pitch contour modification
161(3)
8.1.2 Change of speaker identity
164(1)
8.1.3 Speed change
165(1)
8.2 Speech Coding
166(10)
8.2.1 Basic techniques
166(3)
8.2.2 Vector quantization
169(1)
8.2.3 Coding based on timbre vectors
170(6)
8.3 Speech Recognition
176(5)
8.3.1 Frontend of a speech recognizer
176(1)
8.3.2 Acoustic processor with a fixed window size
177(1)
8.3.3 Speech recognition based on timbre vectors
178(2)
8.3.4 Concept of phonette
180(1)
8.4 Speech Synthesis
181(7)
8.4.1 Formant synthesizer and concatenative synthesizer
181(1)
8.4.2 Speech synthesizer based on timbre vectors
182(2)
8.4.3 Timbre fusing
184(2)
8.4.4 Irreducible units
186(1)
8.4.5 Phonette-based universal TTS synthesizer
187(1)
8.5 Syllable-Centered Pitch Parameterization
188(11)
8.5.1 Linear approximation
188(3)
8.5.2 Extraction of parameters
191(2)
8.5.3 An exemplifying case
193(2)
8.5.4 Global pitch contour and phrase type
195(1)
8.5.5 Quadratic approximation
195(2)
8.5.6 The general procedure
197(2)
Appendix A Kramers-Kronig Relations 199(2)
Appendix B Laguerre Functions 201(2)
Bibliography 203(8)
Index 211