Atnaujinkite slapukų nuostatas

El. knyga: Elements of Plasma Technology

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book presents some fundamental aspects of plasma technology that are important for beginners interested to start research in the area of plasma technology . These include the properties of plasma, methods of plasma generation and basic plasma diagnostic techniques. It also discusses several low cost plasma devices, including pulsed plasma sources such as plasma focus, pulsed capillary discharge, vacuum spark and exploding wire; as well as low temperature plasmas such as glow discharge and dielectric barrier discharge which the authors believe may have potential applications in industry. The treatments are experimental rather than theoretical, although some theoretical background is provided where appropriate. The principles of operation of these devices are also reviewed and discussed.

1 Basic Concepts in Plasma Technology
1(14)
1.1 Plasma---The Fourth State of Matter
1(1)
1.2 Collision
2(3)
1.2.1 Elastic Collision
2(2)
1.2.2 Inelastic Collision
4(1)
1.3 Collision Cross-Section
5(1)
1.4 Fundamental Processes in a Plasma
6(1)
1.5 Some Consideration of Thermodynamic Properties of Plasma
7(2)
1.6 Concept of Plasma Potential
9(1)
1.7 Criteria of Plasma
10(1)
1.8 Effect of Boundary in Plasma
11(1)
1.9 Particle Transport Inside Plasma
12(3)
2 Methods of Plasma Generation
15(34)
2.1 DC Electrical Discharge
15(14)
2.1.1 Electrical Breakdown
15(5)
2.1.2 The I-V Characteristic of Electrical Discharge
20(2)
2.1.3 The Corona Discharge
22(1)
2.1.4 The Glow Discharge
23(2)
2.1.5 Hot Cathode Discharge
25(1)
2.1.6 The Arc Discharge
26(3)
2.2 AC (Radiofrequency) Discharge
29(5)
2.3 Microwave Heating of Plasma
34(2)
2.4 Pulsed Plasma Discharges
36(13)
2.4.1 Pulsed Arc Discharge in High Pressure Flash Lamp
38(3)
2.4.2 Inductive Model of Pulsed Discharge---Shock Heating
41(7)
References
48(1)
3 Plasma Diagnostic Techniques
49(50)
3.1 Electrical Measurements
49(12)
3.1.1 Pulsed Current Measurement by Using the Rogowski Coil
50(5)
3.1.2 Pulsed Voltage Measurements
55(4)
3.1.3 Interpretation of the Current and Voltage Waveforms
59(2)
3.2 Pulsed Magnetic Field Measurement
61(1)
3.3 Plasma Spectroscopy
62(12)
3.3.1 Plasma Radiation
62(3)
3.3.2 The Plasma Models
65(3)
3.3.3 Examples of Population Density Distribution and Plasma Spectra
68(2)
3.3.4 Optical Emission Spectroscopy of Plasma
70(4)
3.4 The Langmuir Probe (Electric Probe)
74(4)
3.4.1 Electron Temperature and Density Measurements of Steady State Plasmas
74(2)
3.4.2 Dynamic Studies of a Flowing Plasma (or Charged Particle Beam)
76(2)
3.5 X-ray Diagnostic Techniques
78(13)
3.5.1 X-ray Absorption Filter
79(1)
3.5.2 X-ray Detectors
80(11)
3.6 Neutron Diagnostic Techniques
91(8)
3.6.1 The Foil Activation Neutron Detector for Absolute Neutron Yield Measurement
91(4)
3.6.2 The Detector Setup
95(1)
3.6.3 Time-Resolved Neutron Pulse Measurement
96(2)
References
98(1)
4 Some Examples of Small Plasma Devices
99
4.1 The Electromagnetic Shock Tube
99(6)
4.1.1 Numerical Modeling of the Electromagnetic Shock Tube Dynamics
100(3)
4.1.2 Experimental Measurements of Electromagnetic Shock Tube Dynamics
103(2)
4.2 The Plasma Focus
105(6)
4.2.1 Introduction
105(1)
4.2.2 Characteristics of the Plasma Focus Discharge
105(1)
4.2.3 Design Consideration
106(2)
4.2.4 X-ray Emission from the Plasma Focus Discharge
108(1)
4.2.5 Neutron Emission
109(1)
4.2.6 Particle Beam Emission
110(1)
4.3 The Vacuum Spark
111(1)
4.4 Scaled-Down Operation of Vacuum Spark---Flash X-ray Tube
112(1)
4.5 The Pulsed Capillary Discharge
113(2)
4.6 The 50 Hz Alternating Current (A.C.) Glow Discharge System
115(3)
4.7 Atmospheric Pressure Dielectric Barrier Discharge
118(1)
4.8 Wire Explosion System for Nano Powder Fabrication
119
References
121
Dr. Chiow San Wong received the Ph.D. degree in plasma physics from the University of Malaya (UM), Kuala Lumpur, Malaysia, in 1983. He is Professor of physics and has been the Leader of UMs Plasma Technology Research Group since 1992. His research focuses on plasma physics and applications, particularly pulsed radiation sources and their applications, plasma systems for material processing and surface treatment, and atmospheric discharges. He has published more than 230 papers, with more than 130 in refereed journals. Prof. Wong has been a Fellow of the Malaysian Academy of Sciences since 2007. He was a Fellow of the Alexander von Humboldt Stiftung in 1987 and the President of the Asian African Association for Plasma Training from 2004 to 2012. In 2005, he was the recipient of the Malaysian Toray Science and Technology Award for his contribution in the development of plasma technology in Malaysia.