Atnaujinkite slapukų nuostatas

El. knyga: Elliptic Cohomology: Geometry, Applications, and Higher Chromatic Analogues

Edited by (Massachusetts Institute of Technology), Edited by (University of Rochester, New York)

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Edward Witten once said that Elliptic Cohomology was a piece of 21st Century Mathematics that happened to fall into the 20th Century. He also likened our understanding of it to what we know of the topography of an archipelago; the peaks are beautiful and clearly connected to each other, but the exact connections are buried, as yet invisible. This very active subject has connections to algebraic topology, theoretical physics, number theory and algebraic geometry, and all these connections are represented in the sixteen papers in this volume. A variety of distinct perspectives are offered, with topics including equivariant complex elliptic cohomology, the physics of M-theory, the modular characteristics of vertex operator algebras, and higher chromatic analogues of elliptic cohomology. This is the first collection of papers on elliptic cohomology in almost twenty years and gives a broad picture of the state of the art in this important field of mathematics.

First collection of papers on elliptic cohomology in twenty years; represents the diversity of topics within this important field.

Daugiau informacijos

First collection of papers on elliptic cohomology in twenty years; represents the diversity of topics within this important field.
Preface vii
Charles Thomas, 1938-2005 xiii
1. Discrete torsion for the supersingular orbifold sigma genus
1
Matthew Ando and Christopher P. French
2. Quaternionic elliptic objects and K3-cohomology
26
Jorge A. Devoto
3. The M-theory 3-form and E8 gauge theory
44
Emanuel Diaconescu, Daniel S. Freed and Gregory Moore
4. Algebraic groups and equivariant cohomology theories
89
John P.C. Greenlees
5. Delocalised equivariant elliptic cohomology (with an introduction by Matthew Ando and Haynes Miller)
111
Ian Grojnowski
6. On finite resolutions of K(n)-local spheres
122
Hans-Werner Henn
7. Chromatic phenomena in the algebra of BP,BP-comodules
170
Mark Hovey
8. Numerical polynomials and endomorphisms of formal group laws
204
Keith Johnson
9. Thom prospectra for loopgroup representations
214
Nitu Kitchloo and Jack Morava
10. Rational vertex operator algebras 239
Geoffrey Mason
11. A possible hierarchy of Morava K-theories 255
Norihiko Minami
12. The motivic Thom isomorphism 265
Jack Morava
13. Toward higher chromatic analogs of elliptic cohomology 286
Douglas C. Ravenel
14. What is an elliptic object? 306
Graeme Segal
15. Spin cobordism, contact structure and the cohomology of p-groups 318
C.B. Thomas
16. Brave New Algebraic Geometry and global derived moduli spaces of ring spectra 325
Bertrand Toen and Gabriele Vezzosi
17. The elliptic genus of a singular variety 360
Burt Totaro
Haynes C. Miller is Professor of Mathematics at Massachusetts Institute of Technology, Boston. Douglas C. Ravenel is Fayerweather Professor of Mathematics, University of Rochester, NY.